Задаци

  • 1.      

    Површина правог ваљка је \(P = 8\pi cm^2 \), а висина му је за \(1cm\) краћа од пречника основе. Запремина ваљка је:

    \( 5\pi cm^3 \) 
    \( \frac{40}{27}\pi cm^3 \) 
    \( \frac{80}{27}\pi cm^3 \)
    \( \frac{40}{9}\pi cm^3 \) 
    \( 3\pi cm^3 \) 

    Провери одговоре Не знам

  • 2.      

    Дате су функције \(f_1(x)=x, f_2(x)=\sqrt{x^2}\) и \(f_3(x)=(\sqrt{x})^2 .\) Тачан је исказ:

    \(   f_3 = f_1 \neq f_2   \)  
    \(   f_1 \neq f_2 = f_3   \)
    \( f_1 = f_2 \neq f_3    \) 
    \(  f_1 = f_2 = f_3  \)
    \(  f_1\neq f_2 \neq f_3 \neq f_1 \)

    Провери одговоре Не знам

  • 3.      

    Број различитих решења једначине \(1 + \sin 2x - 2\sin x = \cos 2x\) на интервалу \([0,3\pi]\) је:

    \( 6 \)
    \(   4\)
    \(     5    \)  
    \(    2     \)  
    \(  3    \)

    Провери одговоре Не знам

  • 4.      

    Нека је \(a_n\) аритметички низ, \(a_1=4 \). Ако је збир првих пет чланова тог низа \(90,\) тада је \(a_{15}\) једнако:

    \( 102  \)
    \(    108 \)  
    \(  104    \)
    \(   100      \)  
    \(   106   \)

    Провери одговоре Не знам

  • 5.      

    Збир свих решења једначине \(2^{x^2-3x}+(\frac{1}{2})^{x^2-3x-4}=17\) једнак је:

    \(  3    \)
    \(    12     \)   
    \(     15    \)
    \( 6 \)
    \(   9\)

    Провери одговоре Не знам

  • 6.      

    Целих бројева \(x\) за које важи неједналост  \(x+1>\sqrt{5-x}\)  има:
     

     

    \(4\)  
    \(2\)
    \(3\)  
    \(1\)     
    \(5\)  

    Провери одговоре Не знам

  • 7.      

    Дате су функције \(f_1(x)=\frac{\sqrt{x^4+2x^2+1}}{x^2+1}, f_2(x)=sin^2x+cos^2x, f_3(x)=tgx\cdot ctgx\). Тачан је исказ:
     

     

    \(f_1\neq f_2\neq f_3\)    
    \(f_1=f_2\neq f_3\)  
     \(f_1\neq f_2=f_3\)    
    \(f_3=f_1\neq f_2\)  
    \(f_1=f_2=f_3\)    

    Провери одговоре Не знам

  • 8.      

    Шестоцифрених бројева дељивих са 2, код којих су све цифре различите, направљених од цифара 0 , 1, 2 , 3 , 4 , 5 има:

    \(    216  \)  
    \( 312   \)
    \(   120   \)
    \(            288      \)  
    \(  360    \)

    Провери одговоре Не знам

  • 9.      

     Ако је \(log_\sqrt{5}\), тада је \(log_{10}2\) једнако: 

     

     \(\frac{1}{2(a+1)} \)  
    \(\frac{2}{a+1}\)
    \(\frac{1}{2a+1}\)
    \(\frac{1}{a+2}\)
    \(\frac{a+1}{2}\)     

    Провери одговоре Не знам

  • 10.      

    Тангенте постављене из тачке \(A(2,4)\) на кружницу \(x^2+y^2=2\) секу осу \(Oy\) у тачкама \(B\) и \(C\). Површина троугла \(ABC\) једнака је:

     

    \(12\)
    \(10\)  
    \(16\)
     \(8\)
    \(6 \)       

    Провери одговоре Не знам

  • 11.      

    Ако је лопта запремине \(V_1\) уписана у коцку запремине \(V_2\) , тада је \(\frac{V_1}{V_2}\) једнако:

    \(   \frac{\pi}{4}    \)  
    \(  \frac{\pi}{8}    \)
    \(  \frac{\pi}{6}  \)
    \(    \frac{2\pi}{9}    \) 
    \(   \frac{\pi}{3} \)

    Провери одговоре Не знам

  • 12.      

    Производ свих реалних решења једначине \(3|x|=12-x\) једнак је:

    \(    6\) 
    \(    3  \) 
    \(   -6\)
    \(  -18     \)
    \(  -12     \)

    Провери одговоре Не знам

  • 13.      

    Ако је \(sin\alpha=\frac{5}{13}, \frac{\pi}{2}<\alpha<\pi, cos\beta=-\frac{3}{5}, \pi<\beta<\frac{3\pi}{2}\) , тада је \(cos(\alpha + \beta)\) једнако:

    \(     \frac{16}{65}   \)  
    \(  \frac{36}{65}   \)
    \( \frac{56}{65}  \)
    \(    -\frac{16}{65}     \)  
    \(   -\frac{56}{65}   \)

    Провери одговоре Не знам

  • 14.      

    Број свих решења једначине \(log_3(x+1)-log_3(3x-1)+log_3(5x-4)=2log_3(x-2)\) је:

    \( 1 \)
    \(   0\)
    \(  3    \)
    \(    2     \)  
    већи од \(     3     \)   

    Провери одговоре Не знам

  • 15.      

    Ако је запремина правог ваљка \(V=6\pi\), а површина његовог омотача \(M=4\pi\), тада је однос полупречника основе \(r \) и висине \(H, \frac{r}{H}\) једнак: 

    \(3 \)
    \(2\)  
     \(4\)  
    \(4,5\)
    \(2,5\)

    Провери одговоре Не знам

  • 16.      

    Из тачке \(A(3,4) \) постављена је нормала \(n\) на праву \(p:4x-2y+1=0\) . Ако се праве \(p \) и \(n\) секу у тачки \(S(x_S,y_S)\) , тада је \(x_S\cdot y_S\) једнако:

    \(   \frac{38}{9}   \)
    \(  7    \)
    \(  9  \)
    \(    \frac{39}{2}   \)  
    \(   \frac{5}{2}   \)  

    Провери одговоре Не знам

  • 17.      

    Ако је \(log_23=a \), тада је \(log_64\) једнако:

    \(  \frac{2}{1+a}  \)
    \(   \frac{1}{1+2a}       \)
    \( \frac{1}{2(1+a)}  \)  
    \(  -2(1+a) \)
    \(       \frac{1}{2+a}     \)  

    Провери одговоре Не знам

  • 18.      


     Број решења једначине \(2\sin^2x=\sin2x\) на интервалу \([-\pi,\pi]\) једнак је

    3      
    5
    4
    6

    Провери одговоре Не знам

  • 19.      

    Целих бројева који припадају скупу решења неједначине \(\frac{3x-16}{-x^2+11x-28} \geq 1\) има:

    \( 3 \)
    \(  2    \)
    \(   4\)
    \(     5    \)   
    бесконачно много 

    Провери одговоре Не знам

  • 20.      

    У троуглу су странице \(b=3\sqrt{3}\) и \(c= 6\) , а најмањи угао \(\alpha=\frac{\pi}{6} \). Ако је трећа страница \(a < b\) , тада је \(a\) једнако:

    \(   \frac{5}{2}    \)
    \(     \frac{3}{2}    \)  
    \(  2\sqrt{3}    \)
    \( 3 \)
    \(    2     \) 

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време