Пријемни испит
Број поена
Саобраћајни, Технички, Машински и Факултет организационих наука
Збир највећег негативног и најмањег позитивног решења неједначине \(\cos ^{4}x-\sin ^{4}x=1+\sin x\) је:
Ако је збир свих решења једначине \(1+\log_{2}(2^{x}-1)=\log_{2^{x}-1}64 ,\) онда је вредност \(2a+3\) једнака:
Једна катета правоуглог троугла дужа је од друге катете за \(10cm\) , а краћа од хипотенузе за \(10cm \). Дужина хипотенузе припада интервалу :
Број решења једначине \(|x-1|+2x=5\) је:
Комплексан број \(\frac{2\cdot i^{2013}}{1+i}\) једнак је:
Ако је запремина правог ваљка \(V=6\pi\), а површина његовог омотача \(M=4\pi\), тада је однос полупречника основе \(r \) и висине \(H, \frac{r}{H}\) једнак:
Разлика највећег и намањег решења једначине \(\sqrt{x-3}+\sqrt{8-x}=3\) једнак је:
Око праве правилне четворостране призме запремине \(128 cm^3\) описан је кружни ваљак тако да основа призме припадају одговарајућим основама ваљка. Запремина тог ваљка ( у \(cm^3\) ) износи:
Угао између правих \( p : x - 3y + 5 = 0\) и \(q : 2x - y - 3 = 0\) je:
Збир свих решења једначине\( \sqrt{2x^2 - x + 3} = x +1\) je:
Израз \((a^{-1}+b^{-1})^{-1}:(b^{-1}-a^{-1})^{-1}, (a,b\neq0, a\neq b)\) идентички је једнак изразу:
Дате су функције \(f_1(x)=\frac{\sqrt{x^4+2x^2+1}}{x^2+1}, f_2(x)=sin^2x+cos^2x, f_3(x)=tgx\cdot ctgx\). Тачан је исказ:
У развоју \(\left ( \sqrt[4]{3}+\sqrt[3]{2} \right )^{2012}\) број чланова који су цели бројеви једнак је:
Нека је \(ax + b\) остатак који се добија дељењем полинома \(P(x)=x^{2013}-64x^{2007}+65\) полиномом \(Q(x) = x^2 - 3x + 2\) . Tada je vrednost izraza \(a + b\) једнака
У биномном развоју \((x^3+\frac{1}{x})^{12}\), члан који не садржи \(x\) је:
У троуглу су странице \(b=3\sqrt{3}\) и \(c= 6\) , а најмањи угао \(\alpha=\frac{\pi}{6} \). Ако је трећа страница \(a < b\) , тада је \(a\) једнако:
Број решења једначине \( \sin(x-\frac{\pi}{3})=\frac{1}{2}\) у интервалу \([-2\pi, 2\pi]\) je:
Вредност израза \(\frac{8}{3-\sqrt{5}}-\frac{2}{2+\sqrt{5}}\) je:
Основе правог ваљка и праве купе су кругови полупречника \(12 cm\). Ако су запремине ваљка и купе једнаке, а висина купе за \(6 cm\) дужа од висине ваљка, онда је однос површина ваљка и купе једнак:
Ако су странице троугла \(a=1, b=3\sqrt{2}, c=5\), тада је највећи угао једнак:
Тренутно нема података за приказ графикона!
Попуните образац за слање ваших резултата вашем наставнику.