Задаци

  • 1.      

    3. Израз\( \frac{1}{a+\frac{1}{b+\frac{1}{a}}}\cdot\frac{1}{b+\frac{1}{a}}\cdot \frac{1}{b+\frac{1}{a+\frac{1}{b}}}\cdot\frac{1}{a+\frac{1}{b}}\), за оне вредности променљивих \(a\) и \(b\) за које је дефинисан, идентички је једнак изразу:

     [math]a-b[math]    
    [math]0 [math] 
    [math]\frac{a+1}{ab}[math]
    [math]\frac{ab +1}{ab}[math]
    [math]ab+1[math]    

    Провери одговоре Не знам

  • 2.      

    Целих бројева који припадају скупу решења неједначине \(\frac{3x-16}{-x^2+11x-28} \geq 1\) има:

    \(  2    \)
    \(   4\)
    бесконачно много 
    \( 3 \)
    \(     5    \)   

    Провери одговоре Не знам

  • 3.      

    Збир свих решења једначине\( \sqrt{2x^2 - x + 3} = x +1\) je:

     

    \(3\)
    \(2\)  
    \(5\)
    \(4\)  
    \(-1\)    

    Провери одговоре Не знам

  • 4.      

    Производ свих реалних решења једначине \(3|x|=12-x\) једнак је:

    \(   -6\)
    \(  -18     \)
    \(    3  \) 
    \(  -12     \)
    \(    6\) 

    Провери одговоре Не знам

  • 5.      

    Ако је збир свих решења једначине \(1+\log_{2}(2^{x}-1)=\log_{2^{x}-1}64 ,\) онда је вредност \(2a+3\) једнака:

    \(45 \)
    \(30 \)
    \(64 \)
    [math]32 [/math
    \(15 \)

    Провери одговоре Не знам

  • 6.      

    Разлика највећег и намањег решења једначине \(\sqrt{x-3}+\sqrt{8-x}=3\) једнак је:

    \(4\)  
    \(5 \)  
    \(3\)
    \(2\)
    \( 1 \)  

    Провери одговоре Не знам

  • 7.      

     Ако су \(x_1\) и \(x_2\) решења једначине \(x^2+5x-9=0\), тада је \(x^3_1+x^3_2\) једнако:

    \(10\)  
    \(170\)
    \(-260\)
     \(-170\)
    \(-10\)        

    Провери одговоре Не знам

  • 8.      

    Укупна цена две књиге износи \(2600\) . Уколико би се цена прве књиге увећала за \(150\) динара и цена друге умањила за \(150\) динара, тада би цена друге износила \(30\%\) цене прве књиге. Разлика цене прве и друге књиге (у динарима) једнака је:

    \(1150 \)
    \(1250 \)
    \(1050 \)
    \(1200 \)
    \(1100 \)

    Провери одговоре Не знам

  • 9.      

    У троуглу \(ABC\) је \(AB = 6 cm \), \(AC = 5 cm\) и \(AD = 4 cm\) , где је \(D\) подножје висине из темена \(A .\) Дужина полупречника описане кружнице троугла \(ABC \)\(cm\) ) једнака је:

    \(\frac{17}{4}cm \)
    \(\frac{9}{2}cm \)
    \(\frac{15}{4}cm \)
    \(\frac{7}{2}cm \)
    \(17 \)

    Провери одговоре Не знам

  • 10.      

    Број реалних решења једначине \( \log \sqrt{x-2}+3\log \sqrt{x+2}=\frac{1}{2}+\log \sqrt{x^{2}-4}\)  је:

    \(1\)
    \(2\)
    \(3\)
    \(4\)    
    \(0\)

    Провери одговоре Не знам

  • 11.      

     Дата је геометријска прогресија \(a_1, a_2, a_3, . . . \). Ако је \(a_1+a_7 =\frac{65}{16}\) и \(a_2+a_8 =\frac{65}{32}\) , онда је \(\frac{ a_3}{ a_{13}} \) једнако:

    \(2^{-12} \)
    \(2^{-10} \)
    \(2^{13} \)
    \(2^{10} \)
    \(2^{12} \)

    Провери одговоре Не знам

  • 12.      

     У развоју \(\left ( \sqrt{3}+\sqrt[3]{2} \right )^{n}\), где је \(n\in \mathbb{N}\), биномни коефицијент трећег члана је 1005 пута већи од биномног коефицијента другог члана. Број чланова у том развоју који су рационални бројеви је:

    \(1005\) 
    \(1006\)
    \(335\)
    \(336\)
    \(334\)

    Провери одговоре Не знам

  • 13.      

    Ако се цена артикла најпре повећа за \(30\%\) а онда смањи за \(20\%\) коначна цена артикла у односу на почетну цену је:

    мања за\( 2\% \) 
    већа за\( 10\% \) 
    већа за\( 4\% \)
    већа за\( 2\% \) 
    већа за\( 5\% \) 

    Провери одговоре Не знам

  • 14.      

     Производ свих решења једначине \(2+4^{\sqrt{x^{2}-3}+x-3}=6\cdot 2^{\sqrt{x^{2}-3}+x-4} \) једнак је:

    \(16 \)
    \(\frac{19}{4} \)
    \(4 \)
    \(\frac{19}{2} \)
    \(8 \)

    Провери одговоре Не знам

  • 15.      

     Ако је \(log_\sqrt{5}\), тада је \(log_{10}2\) једнако: 

     

    \(\frac{1}{a+2}\)
    \(\frac{a+1}{2}\)     
    \(\frac{2}{a+1}\)
     \(\frac{1}{2(a+1)} \)  
    \(\frac{1}{2a+1}\)

    Провери одговоре Не знам

  • 16.      

    Комплексан број  \(\frac{2\cdot i^{2013}}{1+i}\) једнак је:

    \(  1+i \)
    \(   -1-i    \)  
    \(   -1+i     \)
    \(  1-i   \)
    \(    i  \)  

    Провери одговоре Не знам

  • 17.      

    Дате су функције \(f_1(x)=\frac{\sqrt{x^4+2x^2+1}}{x^2+1}, f_2(x)=sin^2x+cos^2x, f_3(x)=tgx\cdot ctgx\). Тачан је исказ:
     

     

    \(f_1=f_2\neq f_3\)  
    \(f_1\neq f_2\neq f_3\)    
    \(f_1=f_2=f_3\)    
     \(f_1\neq f_2=f_3\)    
    \(f_3=f_1\neq f_2\)  

    Провери одговоре Не знам

  • 18.      

    Тачка \(A\left ( 5,\frac{12}{5} \right )\) и жиже елипсе \(\frac{x^2}{169}+\frac{y^2}{144}=1\) су темена троугла \(ABC\) . Обим датог троугла је:

    \(32 \)
    \(28 \)
    \(34 \)
    \(30 \)
    \(36 \)

    Провери одговоре Не знам

  • 19.      

    Ако 12 радника, радећи 5 дана, зараде 125000 динара, 15 радника за 6 дана заради:

     187500 дин.
    154500 дин. 
    237500 дин. 
    217500 дин.   
     163500 дин. 

    Провери одговоре Не знам

  • 20.      

    Израз \(\frac{sin(\alpha+\beta)+sin(\alpha-\beta)}{cos(\alpha+\beta)+cos(\alpha-\beta)}\) идентички је једнак изразу:

    \( tg2\alpha \) 
    \( sin(\alpha+\beta) \) 
    \( tg\alpha \)
    \( tg(\alpha+\beta) \) 
    \( \frac{sin\alpha}{cos\alpha} \) 

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време