Задаци

  • 1.      

    Сва решења једначине \(3\cdot16^x + 2\cdot 81^x =5\cdot36^x\) припадају интервалу:

     

    \((-3,-1)\)     
    \((-1,1)\) 
    \((3,5)\)    
    \((1,3)\)  
    \((5,7)\)

    Провери одговоре Не знам

  • 2.      

    Основе правог ваљка и праве купе су кругови полупречника \(12 cm\). Ако су запремине ваљка и купе једнаке, а висина купе за \(6 cm\) дужа од висине ваљка, онда је однос површина ваљка и купе једнак:

    \(3 : 2\)
    \(10:9\)
    \(4 : 3\)  
    \(8 : 7\)
    \(6 : 5\)

    Провери одговоре Не знам

  • 3.      

    3. Израз\( \frac{1}{a+\frac{1}{b+\frac{1}{a}}}\cdot\frac{1}{b+\frac{1}{a}}\cdot \frac{1}{b+\frac{1}{a+\frac{1}{b}}}\cdot\frac{1}{a+\frac{1}{b}}\), за оне вредности променљивих \(a\) и \(b\) за које је дефинисан, идентички је једнак изразу:

    [math]\frac{ab +1}{ab}[math]
    [math]0 [math] 
    [math]\frac{a+1}{ab}[math]
     [math]a-b[math]    
    [math]ab+1[math]    

    Провери одговоре Не знам

  • 4.      

    Ако се број страница конвексног \(n\)-тоугла повећа зa \(7\), број дијагонала му се повећа за \(119\). Број \(n\) износи:

     

     \(13\)
    \(17\)
     \(14\)  
    \(15\)
    \(12\)      

    Провери одговоре Не знам

  • 5.      

    Комплексан број  \(\frac{2\cdot i^{2013}}{1+i}\) једнак је:

    \(  1-i   \)
    \(    i  \)  
    \(   -1+i     \)
    \(  1+i \)
    \(   -1-i    \)  

    Провери одговоре Не знам

  • 6.      

     Ако су странице троугла \(a=1, b=3\sqrt{2}, c=5\), тада је највећи угао једнак:

     

     \(\frac{2\pi}{3}\)
    \(\frac{5\pi}{6}   \) 
    \(\frac{3\pi}{4} \) 
    \(\frac{5\pi}{12}\)        
    \(\frac{\pi}{2}\)

    Провери одговоре Не знам

  • 7.      

     У развоју \(\left ( \sqrt{3}+\sqrt[3]{2} \right )^{n}\), где је \(n\in \mathbb{N}\), биномни коефицијент трећег члана је 1005 пута већи од биномног коефицијента другог члана. Број чланова у том развоју који су рационални бројеви је:

    \(335\)
    \(1006\)
    \(1005\) 
    \(334\)
    \(336\)

    Провери одговоре Не знам

  • 8.      

     Ако бочна ивица правилне четворостране пирамиде има дужину \(6cm\) и заклапа угао \(45^{\circ}\) са равни основе, запремина пирамиде је:

      \(45cm^3\)
    \(16\sqrt{2}cm^3\)      
    \(36\sqrt{2}cm^3\)
    \(27\sqrt{2}cm^3\)
    \(\frac{40\sqrt{2}}{3}cm^3\)

    Провери одговоре Не знам

  • 9.      

    Скуп свих решења неједначине \(\frac{4x-3}{x-2}>3\) је:

    \( (-\infty,-3)\cup(2,+\infty) \)
    \( (-3,+\infty) \) 
    \( (2,+\infty) \) 
    \( (-\infty,2)\cup(7,+\infty) \) 
    \( (-\infty,-7)\cup(2,+\infty) \) 

    Провери одговоре Не знам

  • 10.      

    Ако је збир свих решења једначине \(1+\log_{2}(2^{x}-1)=\log_{2^{x}-1}64 ,\) онда је вредност \(2a+3\) једнака:

    \(64 \)
    \(45 \)
    \(15 \)
    [math]32 [/math
    \(30 \)

    Провери одговоре Не знам

  • 11.      

    Дате су функције \(f_1(x)=\frac{\sqrt{x^4+2x^2+1}}{x^2+1}, f_2(x)=sin^2x+cos^2x, f_3(x)=tgx\cdot ctgx\). Тачан је исказ:
     

     

    \(f_1\neq f_2\neq f_3\)    
    \(f_1=f_2=f_3\)    
     \(f_1\neq f_2=f_3\)    
    \(f_3=f_1\neq f_2\)  
    \(f_1=f_2\neq f_3\)  

    Провери одговоре Не знам

  • 12.      

    Решење једначине \(log_2(3x-7)=5\) je:

    \( \frac{32}{3} \)
    \( 4 \) 
    \( 11 \) 
    \( \frac{17}{3} \) 
    \( 13 \)

    Провери одговоре Не знам

  • 13.      

    Број реалних решења једначине \( \log \sqrt{x-2}+3\log \sqrt{x+2}=\frac{1}{2}+\log \sqrt{x^{2}-4}\)  је:

    \(2\)
    \(1\)
    \(3\)
    \(4\)    
    \(0\)

    Провери одговоре Не знам

  • 14.      

    Ако је \(log_23=a \), тада је \(log_64\) једнако:

    \(   \frac{1}{1+2a}       \)
    \( \frac{1}{2(1+a)}  \)  
    \(  -2(1+a) \)
    \(       \frac{1}{2+a}     \)  
    \(  \frac{2}{1+a}  \)

    Провери одговоре Не знам

  • 15.      

    Разлика највећег и намањег решења једначине \(\sqrt{x-3}+\sqrt{8-x}=3\) једнак је:

    \(2\)
    \( 1 \)  
    \(4\)  
    \(5 \)  
    \(3\)

    Провери одговоре Не знам

  • 16.      

     Реално решење једначине \(\sqrt{3x+2}-\sqrt{2x-2}=\sqrt{x} \) припада интервалу:

    \(\left (2,3 \right ]\)
    \((3,+ \infty) \)
    \(\left (0,1 \right ]\)
    \(\left (1,2 \right ]\)
    \(\left ( -\infty \right ]\)

    Провери одговоре Не знам

  • 17.      

    Ако је \(J=ab+\frac{a^2b+ab^2}{a^2-b^2}(\frac{a^2}{b}-\frac{b^2}{a}); a=1,75 ; b=1,25\) тада је \(J\) једнако:

    \(  9     \)
    \(   \frac{1}{4}          \)
    \(    4   \)  
    \(    \frac{37}{8}      \)  
    \(  1      \)

    Провери одговоре Не знам

  • 18.      

    Вредност израза \(\frac{\cos 100^o+\sin 50^o}{\sin 200^o}\) једнака је:

    \(\sqrt{2} \)
    \(\sqrt{3} \)
    \(-2 \)
    \(-\sqrt{3} \)
    \(-\sqrt{2} \)

    Провери одговоре Не знам

  • 19.      

    Број свих решења једначине \(log_3(x+1)-log_3(3x-1)+log_3(5x-4)=2log_3(x-2)\) је:

    \(    2     \)  
    \(   0\)
    већи од \(     3     \)   
    \(  3    \)
    \( 1 \)

    Провери одговоре Не знам

  • 20.      

     Све вредности параметра \(p\) , за које за решења \(x_1\) и \(x_2\) једначине \(x^2-px+6=0\) важи релација \(x_1-x_2 = 1\) , припадају скупу:

    \( (4,10) \) 
    \( (-4,4) \) 
    \( (-10,-4) \) 
    \( (-6,6) \)
    \( (-1,6) \) 

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време