Пријемни испит
Број поена
Саобраћајни, Технички, Машински и Факултет организационих наука
Нека је \(S\) скуп свих целобројних вредности параметра \(m\) за које једначина \(x^2-(m-3)x+5+m=0\) има оба решења негативна. Број елемената скупа \(S\) је:
На колико начина се од 6 девојака и 7 младића може саставити екипа од 5 чланова, тако да у екипи буду 3 девојке и 2 младића?
Основе правог ваљка и праве купе су кругови полупречника \(12 cm\). Ако су запремине ваљка и купе једнаке, а висина купе за \(6 cm\) дужа од висине ваљка, онда је однос површина ваљка и купе једнак:
Једначина праве која пролази кроз тачке \(A(-1,1)\) и \(B(1,4)\) гласи:
Ако је полином \(P(x)=x^{2014}+x^{2013}+ax+b\) дељив полиномом \(Q(x)=x^2-1\), тада је \(2a-5b\) једнако:
Скуп свих решења неједначине \(\frac{4x-3}{x-2}>3\) је:
Шестоцифрених бројева дељивих са 2, код којих су све цифре различите, направљених од цифара 0 , 1, 2 , 3 , 4 , 5 има:
Све вредности параметра \(p\) , за које за решења \(x_1\) и \(x_2\) једначине \(x^2-px+6=0\) важи релација \(x_1-x_2 = 1\) , припадају скупу:
Израз \(\frac{sin(\alpha+\beta)+sin(\alpha-\beta)}{cos(\alpha+\beta)+cos(\alpha-\beta)}\) идентички је једнак изразу:
Збир квадрата свих решења једначине \( |x + 4| - |x - 3| = x\) je:
Израз \(\cos(\alpha + \beta)\cos(\alpha - \beta)- \sin(\alpha + \beta)\sin(\alpha - \beta)\) идентички је једнак изразу:
Ако је \(a=225^{\frac{1}{2}-\log_{15}\sqrt[4]{9}}\) онда је \((a-4)^{a}\) једнако:
Једна катета правоуглог троугла дужа је од друге катете за \(10cm\) , а краћа од хипотенузе за \(10cm \). Дужина хипотенузе припада интервалу :
Ако је \(\alpha=\frac{1}{3}\) и \(0<\alpha<\frac{\pi}{2} ,\) тада је \(tg2\alpha\) :
Број решења једначине \(|x-1|+2x=5\) је:
Збир квадрата свих решења једначине \(4^x=2^{\frac{x+1}{x}}\) је:
Дата је геометријска прогресија \(a_1, a_2, a_3, . . . \). Ако је \(a_1+a_7 =\frac{65}{16}\) и \(a_2+a_8 =\frac{65}{32}\) , онда је \(\frac{ a_3}{ a_{13}} \) једнако:
Угао између веће основице и крака једнакокраког трапеза једнак је \(60^{o}\) . Ако је дужина те основице једнака \(9 cm ,\) а крака \(4 cm ,\) површина трапеза (у \(cm^2\) ) једнака је:
Ако за комплексан број \(z\) важи \(\frac{\left | z-1+i \right |}{\left | z-2+2i \right |}=1\) и \(\frac{\left | z \right |}{\left | z-1-i \right |}=1\), гдеје \( i^2 = -1\), тада је \(Im(\bar{z}\cdot i)\) једнак:
Број реалних решења једначине \( \log \sqrt{x-2}+3\log \sqrt{x+2}=\frac{1}{2}+\log \sqrt{x^{2}-4}\) је:
Тренутно нема података за приказ графикона!
Попуните образац за слање ваших резултата вашем наставнику.