Задаци

  • 1.      

    Нека је \(a_n\) аритметички низ, \(a_1=4 \). Ако је збир првих пет чланова тог низа \(90,\) тада је \(a_{15}\) једнако:

    \(  104    \)
    \(   106   \)
    \(    108 \)  
    \( 102  \)
    \(   100      \)  

    Провери одговоре Не знам

  • 2.      

     Угао између правих \( p : x - 3y + 5 = 0\) и \(q : 2x - y - 3 = 0\) je:

    \(90^{\circ}\)
    \(60^{\circ}\)
    \(45^{\circ}\) 
     \(120^{\circ}\)   
    \(30^{\circ}\)  

    Провери одговоре Не знам

  • 3.      

    Ако је \(J=ab+\frac{a^2b+ab^2}{a^2-b^2}(\frac{a^2}{b}-\frac{b^2}{a}); a=1,75 ; b=1,25\) тада је \(J\) једнако:

    \(  9     \)
    \(    \frac{37}{8}      \)  
    \(   \frac{1}{4}          \)
    \(  1      \)
    \(    4   \)  

    Провери одговоре Не знам

  • 4.      

     Ако је \(a=225^{\frac{1}{2}-\log_{15}\sqrt[4]{9}}\) онда је \((a-4)^{a}\) једнако:

    \(0 \)
    [math]4 [/math
    \(64 \)
    \(-1 \)
    \(1 \)

    Провери одговоре Не знам

  • 5.      

    Ако је првобитна цена књиге од \(500\) динара смањена најпре за \(10\%\), а затим за \(20\%\), нова цена књиге (у динарима) је:

     

    \(350\)
    \(470\)      
    \(340\)  
    \(360\)
     \(380\)

    Провери одговоре Не знам

  • 6.      

    На колико начина се од 6 девојака и  7 младића може саставити екипа од 5 чланова, тако да у екипи буду 3 девојке и 2 младића?

     

    \(512\)
    \(128\)    
    \(41\)  
    \(420\)
    \(945\)  

    Провери одговоре Не знам

  • 7.      

    Вредност израза \( \frac{3}{\sqrt{2}+1}+\frac{4}{\sqrt{2}+2}+\frac{7}{\sqrt{2}+3}\) je:

     

    [math]6-\sqrt{2}[\math]
    [math]6\sqrt{2}[\math]    
    [math]4[\math]
    [math]2[\math]
    [math]3\sqrt{2}[\math]  

    Провери одговоре Не знам

  • 8.      

     У биномном развоју  \((x^3+\frac{1}{x})^{12}\), члан који не садржи \(x\) је:

     

     пети
    девети
    седми
     десети
    једанаести

    Провери одговоре Не знам

  • 9.      

    Број свих решења једначине \(log_3(x+1)-log_3(3x-1)+log_3(5x-4)=2log_3(x-2)\) је:

    \( 1 \)
    \(  3    \)
    \(   0\)
    већи од \(     3     \)   
    \(    2     \)  

    Провери одговоре Не знам

  • 10.      

    Ако је \(\alpha=\frac{1}{3}\) и \(0<\alpha<\frac{\pi}{2} ,\) тада је \(tg2\alpha\) :

    \( -\frac{4\sqrt{2}}{7} \) 
    \( -\frac{2\sqrt{2}}{7} \) 
    \( \frac{3\sqrt{2}}{8} \) 
    \( \frac{4\sqrt{2}}{7} \)
    \( \frac{2\sqrt{2}}{7} \) 

    Провери одговоре Не знам

  • 11.      

    Ако се цена артикла најпре повећа за \(30\%\) а онда смањи за \(20\%\) коначна цена артикла у односу на почетну цену је:

    већа за\( 4\% \)
    мања за\( 2\% \) 
    већа за\( 2\% \) 
    већа за\( 10\% \) 
    већа за\( 5\% \) 

    Провери одговоре Не знам

  • 12.      

    Сва решења једначине \(3\cdot16^x + 2\cdot 81^x =5\cdot36^x\) припадају интервалу:

     

    \((-3,-1)\)     
    \((1,3)\)  
    \((-1,1)\) 
    \((5,7)\)
    \((3,5)\)    

    Провери одговоре Не знам

  • 13.      

    Око праве правилне четворостране призме запремине \(128 cm^3\) описан је кружни ваљак тако да основа призме припадају одговарајућим основама ваљка. Запремина тог ваљка ( у \(cm^3\) ) износи:

    \(32\sqrt{3}\pi \)
    \(56\pi \)
    \(48\pi\)
    \(64 \pi \)
    \(72\pi \)

    Провери одговоре Не знам

  • 14.      

    Скуп свих решења неједначине \(\frac{4x-3}{x-2}>3\) је:

    \( (-\infty,2)\cup(7,+\infty) \) 
    \( (-\infty,-7)\cup(2,+\infty) \) 
    \( (-\infty,-3)\cup(2,+\infty) \)
    \( (-3,+\infty) \) 
    \( (2,+\infty) \) 

    Провери одговоре Не знам

  • 15.      

     Производ свих решења једначине \(2+4^{\sqrt{x^{2}-3}+x-3}=6\cdot 2^{\sqrt{x^{2}-3}+x-4} \) једнак је:

    \(16 \)
    \(4 \)
    \(\frac{19}{4} \)
    \(\frac{19}{2} \)
    \(8 \)

    Провери одговоре Не знам

  • 16.      

    Дате су функције \(f_1(x)=x, f_2(x)=\sqrt{x^2}\) и \(f_3(x)=(\sqrt{x})^2 .\) Тачан је исказ:

    \(   f_1 \neq f_2 = f_3   \)
    \(  f_1 = f_2 = f_3  \)
    \(   f_3 = f_1 \neq f_2   \)  
    \( f_1 = f_2 \neq f_3    \) 
    \(  f_1\neq f_2 \neq f_3 \neq f_1 \)

    Провери одговоре Не знам

  • 17.      

    Дате су тачке \(A(1,2), B(4,-7), C(6,-3).\) Ако је \(D(x_0, y_0)\) подножје висине спуштене из тачке \(C\) на страницу \(AB\), троугла \(ABC\) тада је \(x_0\cdot y_0\) једнако:

     

    \(4\)
     \( 8\)
    \(-12\)
    \(-6 \)        
    \( 16\)

    Провери одговоре Не знам

  • 18.      

    Биномни коефицијент четвртог члана у развоју \(\left (\sqrt[5]{11}+\sqrt[11]{5}  \right )^{n}\) је \(671\) пута већи од биномног коефицијента трећег члана. Број свих чланова у овом развоју који нису цели бројеви једнак је:

    \(1613\)  
    \(1979\)
     \(1978\)
    \(1833\)
    \(2015\)

    Провери одговоре Не знам

  • 19.      

    Број реалних решења једначине \( \log \sqrt{x-2}+3\log \sqrt{x+2}=\frac{1}{2}+\log \sqrt{x^{2}-4}\)  је:

    \(2\)
    \(3\)
    \(1\)
    \(4\)    
    \(0\)

    Провери одговоре Не знам

  • 20.      

    Из тачке \(A(3,4) \) постављена је нормала \(n\) на праву \(p:4x-2y+1=0\) . Ако се праве \(p \) и \(n\) секу у тачки \(S(x_S,y_S)\) , тада је \(x_S\cdot y_S\) једнако:

    \(  9  \)
    \(    \frac{39}{2}   \)  
    \(  7    \)
    \(   \frac{5}{2}   \)  
    \(   \frac{38}{9}   \)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време