Пријемни испит
Број поена
Саобраћајни, Технички, Машински и Факултет организационих наука
Ако је лопта запремине \(V_1\) уписана у коцку запремине \(V_2\) , тада је \(\frac{V_1}{V_2}\) једнако:
Збир свих девет чланова аритметичке прогресије је за \(164\) већи од збира првих пет чланова те прогресије. Ако је девети члан за \(14\) мањи од двоструке вредности шестог члана, онда је производ прва два члана дате прогресије једнак:
Скуп решења неједначине \(\log_{\frac{1}{2}}(x^{2}-2x+1)>\log_{2}\frac{1}{4}\) је:
Једначина праве која пролази кроз тачке \(A(-1,1)\) и \(B(1,4)\) гласи:
Број целобројних решења неједначине \(\frac{x^{2}-5x-5}{x^{2}+x-10}<-1\) је:
Дате су тачке \(A(1,2), B(4,-7), C(6,-3).\) Ако је \(D(x_0, y_0)\) подножје висине спуштене из тачке \(C\) на страницу \(AB\), троугла \(ABC\) тада је \(x_0\cdot y_0\) једнако:
Ако је \(\left (\frac{55}{84}:x+1\frac{1}{2}\right)\cdot\frac{5}{33}=2\frac{1}{2}\) , онда је \(x\) једнако:
Ако су странице троугла \(a=1, b=3\sqrt{2}, c=5\), тада је највећи угао једнак:
Збир прва три члана аритметичког низа је \(21\), а разлика трећег и првог члана је \(6\). Осми члан тог низа једнак је:
Број реалних решења једначине \( \log \sqrt{x-2}+3\log \sqrt{x+2}=\frac{1}{2}+\log \sqrt{x^{2}-4}\) је:
Збир свих решења једначине \(2^{x^2-3x}+(\frac{1}{2})^{x^2-3x-4}=17\) једнак је:
3. Израз\( \frac{1}{a+\frac{1}{b+\frac{1}{a}}}\cdot\frac{1}{b+\frac{1}{a}}\cdot \frac{1}{b+\frac{1}{a+\frac{1}{b}}}\cdot\frac{1}{a+\frac{1}{b}}\), за оне вредности променљивих \(a\) и \(b\) за које је дефинисан, идентички је једнак изразу:
Ако бочна ивица правилне четворостране пирамиде има дужину \(6cm\) и заклапа угао \(45^{\circ}\) са равни основе, запремина пирамиде је:
Ако су \(x_1\) и \(x_2\) решења једначине \(x^2+10\sqrt{3}x+6\sqrt{3}=0\) тада је \(\frac{1}{x_1}+\frac{1}{x_2}\) једнако:
Разлика највећег и намањег решења једначине \(\sqrt{x-3}+\sqrt{8-x}=3\) једнак је:
Ако 12 радника, радећи 5 дана, зараде 125000 динара, 15 радника за 6 дана заради:
Производ свих реалних решења једначине \(|x|+|x-1|=x+\frac{1}{2}\) једнак је:
Ако је у аритметичкој прогресији први члан \(a_1=16\), а збир првих девет чланова \(S_9=0\), тада је збир првих \(19\) чланова \(S_{19}\):
Ако је \(sin\alpha=\frac{5}{13}, \frac{\pi}{2}<\alpha<\pi, cos\beta=-\frac{3}{5}, \pi<\beta<\frac{3\pi}{2}\) , тада је \(cos(\alpha + \beta)\) једнако:
Скуп свих решења неједначине \(\frac{|x-2|}{x^2-3x+2}\geq 2\) у скупу реалних бројева je:
Тренутно нема података за приказ графикона!
Попуните образац за слање ваших резултата вашем наставнику.