Задаци

  • 1.      

    Вредност израза \( \frac{3}{\sqrt{2}+1}+\frac{4}{\sqrt{2}+2}+\frac{7}{\sqrt{2}+3}\) je:

     

    [math]4[\math]
    [math]2[\math]
    [math]6\sqrt{2}[\math]    
    [math]6-\sqrt{2}[\math]
    [math]3\sqrt{2}[\math]  

    Провери одговоре Не знам

  • 2.      

    Број реалних решења једначине \( \log \sqrt{x-2}+3\log \sqrt{x+2}=\frac{1}{2}+\log \sqrt{x^{2}-4}\)  је:

    \(0\)
    \(1\)
    \(3\)
    \(4\)    
    \(2\)

    Провери одговоре Не знам

  • 3.      

    Скуп свих решења неједначине \(3\cdot 81^{x}+2\cdot 16^{x}\leqslant 5\cdot 36^{x}\) је:

    \(\left [ -\frac{1}{3},0 \right ]\)  
    \(\left [ -\frac{4}{9},0 \right ]\)
    \(\left [ -1,0 \right ]\)
    \(\left [ -\frac{2}{3},0 \right ]\)        
    \(\left [ -\frac{1}{2},0 \right ]\)

    Провери одговоре Не знам

  • 4.      

     Производ свих решења једначине \(2+4^{\sqrt{x^{2}-3}+x-3}=6\cdot 2^{\sqrt{x^{2}-3}+x-4} \) једнак је:

    \(\frac{19}{2} \)
    \(16 \)
    \(4 \)
    \(\frac{19}{4} \)
    \(8 \)

    Провери одговоре Не знам

  • 5.      

     Ако су странице троугла \(a=1, b=3\sqrt{2}, c=5\), тада је највећи угао једнак:

     

    \(\frac{5\pi}{6}   \) 
    \(\frac{3\pi}{4} \) 
    \(\frac{5\pi}{12}\)        
     \(\frac{2\pi}{3}\)
    \(\frac{\pi}{2}\)

    Провери одговоре Не знам

  • 6.      

    Дужина крака једнокраког троугла је \(5cm\), а висине која одговара основици \(3cm\). У тај троугао уписан је правоугаоник максималне површине тако да једна страница правоугаоника припада основици троугла. Обим тог правоугаоника је:

    11 cm
    8 cm
    7 cm
    9 cm
    10 cm

    Провери одговоре Не знам

  • 7.      

    Око праве правилне четворостране призме запремине \(128 cm^3\) описан је кружни ваљак тако да основа призме припадају одговарајућим основама ваљка. Запремина тог ваљка ( у \(cm^3\) ) износи:

    \(32\sqrt{3}\pi \)
    \(56\pi \)
    \(48\pi\)
    \(72\pi \)
    \(64 \pi \)

    Провери одговоре Не знам

  • 8.      

    Збир прва три члана аритметичког низа је \(21\), а разлика трећег и првог члана је \(6\). Осми члан тог низа једнак је:

     

    \(26\)
    \(28\)    
    \(25\)
    \(24\)        
    \( 27\)

    Провери одговоре Не знам

  • 9.      

    Ако је \(sin\alpha=\frac{5}{13}, \frac{\pi}{2}<\alpha<\pi, cos\beta=-\frac{3}{5}, \pi<\beta<\frac{3\pi}{2}\) , тада је \(cos(\alpha + \beta)\) једнако:

    \(   -\frac{56}{65}   \)
    \(  \frac{36}{65}   \)
    \(     \frac{16}{65}   \)  
    \( \frac{56}{65}  \)
    \(    -\frac{16}{65}     \)  

    Провери одговоре Не знам

  • 10.      

    Ако је збир свих решења једначине \(1+\log_{2}(2^{x}-1)=\log_{2^{x}-1}64 ,\) онда је вредност \(2a+3\) једнака:

    \(45 \)
    \(15 \)
    \(64 \)
    [math]32 [/math
    \(30 \)

    Провери одговоре Не знам

  • 11.      

    Пети члан аритметичке прогресије је \(a_5 =16\) , а једенаести \(a_{11}=31\) . Збир првих \(17 \) чланова \(S_{17}\) je :

    \( 442 \)
    \( 455 \) 
    \( 372,5 \) 
    \( 368 \) 
    \( 242 \) 

    Провери одговоре Не знам

  • 12.      

    Израз \(\frac{sin(\alpha+\beta)+sin(\alpha-\beta)}{cos(\alpha+\beta)+cos(\alpha-\beta)}\) идентички је једнак изразу:

    \( sin(\alpha+\beta) \) 
    \( tg(\alpha+\beta) \) 
    \( tg\alpha \)
    \( \frac{sin\alpha}{cos\alpha} \) 
    \( tg2\alpha \) 

    Провери одговоре Не знам

  • 13.      

    Тангенте постављене из тачке \(A(2,4)\) на кружницу \(x^2+y^2=2\) секу осу \(Oy\) у тачкама \(B\) и \(C\). Површина троугла \(ABC\) једнака је:

     

    \(10\)  
    \(12\)
    \(6 \)       
     \(8\)
    \(16\)

    Провери одговоре Не знам

  • 14.      

    Број целобројних решења неједначине \(\frac{x^{2}-5x-5}{x^{2}+x-10}<-1\) је:

    \(3\)
    \(4\) 
    \(2\)
    \(1\)
    \(0\) 

    Провери одговоре Не знам

  • 15.      

    Површина правог ваљка је \(P = 8\pi cm^2 \), а висина му је за \(1cm\) краћа од пречника основе. Запремина ваљка је:

    \( 5\pi cm^3 \) 
    \( 3\pi cm^3 \) 
    \( \frac{40}{27}\pi cm^3 \) 
    \( \frac{80}{27}\pi cm^3 \)
    \( \frac{40}{9}\pi cm^3 \) 

    Провери одговоре Не знам

  • 16.      

    Нека је \(a_n\) аритметички низ, \(a_1=4 \). Ако је збир првих пет чланова тог низа \(90,\) тада је \(a_{15}\) једнако:

    \(  104    \)
    \(   100      \)  
    \(    108 \)  
    \( 102  \)
    \(   106   \)

    Провери одговоре Не знам

  • 17.      

    Дате су функције \(f_1(x)=x, f_2(x)=\sqrt{x^2}\) и \(f_3(x)=(\sqrt{x})^2 .\) Тачан је исказ:

    \(   f_1 \neq f_2 = f_3   \)
    \(   f_3 = f_1 \neq f_2   \)  
    \(  f_1\neq f_2 \neq f_3 \neq f_1 \)
    \( f_1 = f_2 \neq f_3    \) 
    \(  f_1 = f_2 = f_3  \)

    Провери одговоре Не знам

  • 18.      

    Вредност израза \(\frac{\cos 100^o+\sin 50^o}{\sin 200^o}\) једнака је:

    \(\sqrt{3} \)
    \(\sqrt{2} \)
    \(-\sqrt{2} \)
    \(-2 \)
    \(-\sqrt{3} \)

    Провери одговоре Не знам

  • 19.      

     Ako за решења \(x_1\) и \(x_2\) једначине \(kx^2-(3k+2)x+7=0\) важи \( \frac{1}{x_1}\frac{1}{x_2}=8\), вредност параметра \(k\) припада интервалу:

    \((-20,-10)\)    
    \((\frac{1}{2},5)\)
    \((5,10)\)    
    \((-10,0)\)
    \((10,20)\)

    Провери одговоре Не знам

  • 20.      

    Ако се цена артикла најпре повећа за \(30\%\) а онда смањи за \(20\%\) коначна цена артикла у односу на почетну цену је:

    већа за\( 4\% \)
    већа за\( 5\% \) 
    већа за\( 10\% \) 
    већа за\( 2\% \) 
    мања за\( 2\% \) 

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време