Задаци

  • 1.      

     Нека је \(f(x)=\frac{1-x}{1+x}\) за \(x\neq -1\) и \(g(x)=\frac{1}{x^2+1} .\) Тада је вредност једнака:

    \(-1 \)
    \(-2 \)
    \(2 \)
    \(0 \)
    \(1 \)

    Провери одговоре Не знам

  • 2.      

    Скуп свих решења неједначине \(\frac{4x-3}{x-2}>3\) је:

    \( (-\infty,-7)\cup(2,+\infty) \) 
    \( (2,+\infty) \) 
    \( (-3,+\infty) \) 
    \( (-\infty,2)\cup(7,+\infty) \) 
    \( (-\infty,-3)\cup(2,+\infty) \)

    Провери одговоре Не знам

  • 3.      

    Ако је \(\sin\alpha=\frac{15}{17}, \frac{\pi}{2}<\alpha<\pi\), тада је \(\cos(\frac{\pi}{4}-\alpha)\) једнако:

     
     

    \(-\frac{15\sqrt{2}}{34}\)  
    \(\frac{23\sqrt{2}}{34}\)  
    \(-\frac{23\sqrt{2}}{34}\)    
    \(-\frac{7\sqrt{2}}{34} \)  
    \(\frac{7\sqrt{2}}{34}\) 

    Провери одговоре Не знам

  • 4.      

     Производ свих решења једначине \(2+4^{\sqrt{x^{2}-3}+x-3}=6\cdot 2^{\sqrt{x^{2}-3}+x-4} \) једнак је:

    \(8 \)
    \(\frac{19}{4} \)
    \(\frac{19}{2} \)
    \(16 \)
    \(4 \)

    Провери одговоре Не знам

  • 5.      

     Ако је полином \(P(x)=x^{2014}+x^{2013}+ax+b\) дељив полиномом \(Q(x)=x^2-1\), тада је \(2a-5b\) једнако:


     

    \(7\)
    \(3\)
    \(-7\)
    \(-3\)  
    \(-12\) 

    Провери одговоре Не знам

  • 6.      

    Комплексан број  \(\frac{2\cdot i^{2013}}{1+i}\) једнак је:

    \(   -1+i     \)
    \(  1+i \)
    \(  1-i   \)
    \(    i  \)  
    \(   -1-i    \)  

    Провери одговоре Не знам

  • 7.      

    Први члан геометријске прогресије је \(a_1=3\) а шести члан је \(a_6=96\) . Збир првих десет чланова \(S_10\) је:

    \( 1023 \) 
    \( 369 \) 
    \( 3069 \)
    \( 6160 \) 
    \( 3080 \) 

    Провери одговоре Не знам

  • 8.      

     Угао између веће основице и крака једнакокраког трапеза једнак је \(60^{o}\) . Ако је дужина те основице једнака \(9 cm ,\) а крака \(4 cm ,\) површина трапеза (у \(cm^2\) ) једнака је:

    \(14\sqrt{3} \)
    \(18 \)
    \( 24\sqrt{3} \)
    \(7\sqrt{3} \)
    \(16\)

    Провери одговоре Не знам

  • 9.      

    Решење једначине \(log_2(3x-7)=5\) je:

    \( 4 \) 
    \( 13 \)
    \( \frac{17}{3} \) 
    \( \frac{32}{3} \)
    \( 11 \) 

    Провери одговоре Не знам

  • 10.      

    Нека је \(P(x) = x^5 + ax^3 + bx\) и \(Q(x) = x^2 + 2x + 1\), где су \(a\) и \(b\) реални бројеви. Ако је полином  \(P\) дељив полиномом \(Q\), тада је вредност израза \(a^2 + b^2\) једнака:

     

    \(10\)
    \(13\)
    \(5\)
    \(8\)
    \(2\)

    Провери одговоре Не знам

  • 11.      

     Нека је \(ax + b\) остатак који се добија дељењем полинома \(P(x)=x^{2013}-64x^{2007}+65\) полиномом \(Q(x) = x^2 - 3x + 2\) . Tada je vrednost izraza \(a + b\) једнака

    \(0 \)
    \(-4 \)
    \(-2 \)
    \(4 \)
    \(2 \)

    Провери одговоре Не знам

  • 12.      

    Различитих петоцифрених бројева, у чијем се запису користе две цифре 2 и по једна цифра 3, 4 и 5, има:

    \( 60 \)
    \(    120     \)
    \(  30    \)
    \(   40 \)
    \(     240    \)   

    Провери одговоре Не знам

  • 13.      

    Ако је лопта запремине \(V_1\) уписана у коцку запремине \(V_2\) , тада је \(\frac{V_1}{V_2}\) једнако:

    \(  \frac{\pi}{8}    \)
    \(  \frac{\pi}{6}  \)
    \(   \frac{\pi}{3} \)
    \(   \frac{\pi}{4}    \)  
    \(    \frac{2\pi}{9}    \) 

    Провери одговоре Не знам

  • 14.      

    Целих бројева који припадају скупу решења неједначине \(\frac{3x-16}{-x^2+11x-28} \geq 1\) има:

    \( 3 \)
    \(     5    \)   
    \(   4\)
    \(  2    \)
    бесконачно много 

    Провери одговоре Не знам

  • 15.      

    Дате су функције \(f_1(x)=\frac{\sqrt{x^4+2x^2+1}}{x^2+1}, f_2(x)=sin^2x+cos^2x, f_3(x)=tgx\cdot ctgx\). Тачан је исказ:
     

     

    \(f_1=f_2\neq f_3\)  
    \(f_1=f_2=f_3\)    
    \(f_1\neq f_2\neq f_3\)    
     \(f_1\neq f_2=f_3\)    
    \(f_3=f_1\neq f_2\)  

    Провери одговоре Не знам

  • 16.      

    Једначина праве која пролази кроз тачке \(A(-1,1)\) и \(B(1,4)\) гласи:

    \( 3x + 2y - 5 = 0 \) 
    \( 2x - 3y + 5 = 0 \) 
    \( 3x – 2y + 5 = 0 \)
    \( x – 2y + 5 = 0 \) 
    \( x – y + 2 = 0 \) 

    Провери одговоре Не знам

  • 17.      

    Ако је запремина правог ваљка \(V=6\pi\), а површина његовог омотача \(M=4\pi\), тада је однос полупречника основе \(r \) и висине \(H, \frac{r}{H}\) једнак: 

    \(2,5\)
     \(4\)  
    \(3 \)
    \(2\)  
    \(4,5\)

    Провери одговоре Не знам

  • 18.      

    Скуп свих решења неједначине \(2x+|x-1|<2\) у скупу реалних бројева је:

    \( (1,2) \) 
    празан скуп   
    \( (-\infty, -1) \) 
    \( (1, +\infty) \) 
    \( (-\infty, 1) \)

    Провери одговоре Не знам

  • 19.      

    Сва решења једначине \(3\cdot16^x + 2\cdot 81^x =5\cdot36^x\) припадају интервалу:

     

    \((3,5)\)    
    \((-1,1)\) 
    \((5,7)\)
    \((1,3)\)  
    \((-3,-1)\)     

    Провери одговоре Не знам

  • 20.      

     Реално решење једначине \(\sqrt{3x+2}-\sqrt{2x-2}=\sqrt{x} \) припада интервалу:

    \(\left (0,1 \right ]\)
    \(\left (1,2 \right ]\)
    \(\left (2,3 \right ]\)
    \(\left ( -\infty \right ]\)
    \((3,+ \infty) \)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време