Пријемни испит
Број поена
Саобраћајни, Технички, Машински и Факултет организационих наука
Производ свих реалних решења једначине \( \sqrt{10+x}-\sqrt{5-x}=\sqrt{1+x}\) једнак је:
Угао између правих \( p : x - 3y + 5 = 0\) и \(q : 2x - y - 3 = 0\) je:
Ако су \(x_1\) и \(x_2\) решења једначине \(x^2+10\sqrt{3}x+6\sqrt{3}=0\) тада је \(\frac{1}{x_1}+\frac{1}{x_2}\) једнако:
Решење једначине \(log_2(3x-7)=5\) je:
На колико начина се од 6 девојака и 7 младића може саставити екипа од 5 чланова, тако да у екипи буду 3 девојке и 2 младића?
Ако је лопта запремине \(V_1\) уписана у коцку запремине \(V_2\) , тада је \(\frac{V_1}{V_2}\) једнако:
Збир свих решења једначине \(2^{x^2-3x}+(\frac{1}{2})^{x^2-3x-4}=17\) једнак је:
Скуп свих решења неједначине \(3\cdot 81^{x}+2\cdot 16^{x}\leqslant 5\cdot 36^{x}\) је:
Биномни коефицијент четвртог члана у развоју \(\left (\sqrt[5]{11}+\sqrt[11]{5} \right )^{n}\) је \(671\) пута већи од биномног коефицијента трећег члана. Број свих чланова у овом развоју који нису цели бројеви једнак је:
Ако су странице троугла \(a=1, b=3\sqrt{2}, c=5\), тада је највећи угао једнак:
Збир квадрата свих решења једначине \( |x + 4| - |x - 3| = x\) je:
Ако је \(J=\frac{a+b}{a-b}\frac{a-b}{a+b}, a=\sqrt{3}, b=\sqrt{2} \) тада је \(J\) једнако:
Ако за комплексан број \(z\) важи \(\left | z-3 \right |=\left | z-3+2i \right |\) и \(\left | z-2i \right |=\left | z+4-2i \right | ,\) где је \(i^{2}=-1 ,\) тада је:
Једна катета правоуглог троугла дужа је од друге катете за \(10cm\) , а краћа од хипотенузе за \(10cm \). Дужина хипотенузе припада интервалу :
Ако је \(a=225^{\frac{1}{2}-\log_{15}\sqrt[4]{9}}\) онда је \((a-4)^{a}\) једнако:
Угао између веће основице и крака једнакокраког трапеза једнак је \(60^{o}\) . Ако је дужина те основице једнака \(9 cm ,\) а крака \(4 cm ,\) површина трапеза (у \(cm^2\) ) једнака је:
У троуглу \(ABC\) је \(AB = 6 cm \), \(AC = 5 cm\) и \(AD = 4 cm\) , где је \(D\) подножје висине из темена \(A .\) Дужина полупречника описане кружнице троугла \(ABC \)(у \(cm\) ) једнака је:
Ако је \(log_\sqrt{5}\), тада је \(log_{10}2\) једнако:
Ако је \( a=\log_{\sqrt{2}}\sqrt[3]{64}-\sqrt[3]{3}^{\log_{\sqrt{3}}27}\), онда је вредност израза \((a+9)^{a+\frac{9}{2}}\) једнака:
Нека је \(S\) скуп свих целобројних вредности параметра \(m\) за које једначина \(x^2-(m-3)x+5+m=0\) има оба решења негативна. Број елемената скупа \(S\) је:
Тренутно нема података за приказ графикона!
Попуните образац за слање ваших резултата вашем наставнику.