Задаци

  • 1.      

    Ако је \(\alpha=\frac{1}{3}\) и \(0<\alpha<\frac{\pi}{2} ,\) тада је \(tg2\alpha\) :

    \( -\frac{4\sqrt{2}}{7} \) 
    \( \frac{4\sqrt{2}}{7} \)
    \( \frac{3\sqrt{2}}{8} \) 
    \( -\frac{2\sqrt{2}}{7} \) 
    \( \frac{2\sqrt{2}}{7} \) 

    Провери одговоре Не знам

  • 2.      

    Дате су тачке \(A(1,2), B(4,-7), C(6,-3).\) Ако је \(D(x_0, y_0)\) подножје висине спуштене из тачке \(C\) на страницу \(AB\), троугла \(ABC\) тада је \(x_0\cdot y_0\) једнако:

     

    \(4\)
    \(-6 \)        
    \(-12\)
    \( 16\)
     \( 8\)

    Провери одговоре Не знам

  • 3.      

    У троуглу \(ABC\) је \(AB = 6 cm \), \(AC = 5 cm\) и \(AD = 4 cm\) , где је \(D\) подножје висине из темена \(A .\) Дужина полупречника описане кружнице троугла \(ABC \)\(cm\) ) једнака је:

    \(17 \)
    \(\frac{7}{2}cm \)
    \(\frac{15}{4}cm \)
    \(\frac{9}{2}cm \)
    \(\frac{17}{4}cm \)

    Провери одговоре Не знам

  • 4.      

    Број целобројних решења неједначине \(\frac{x^{2}-5x-5}{x^{2}+x-10}<-1\) је:

    \(0\) 
    \(3\)
    \(4\) 
    \(1\)
    \(2\)

    Провери одговоре Не знам

  • 5.      

    Број решења једначине \(\sqrt{7-x}=x-1\) је:

    \( 1 \)
    више од\( 4 \) 
    \( 3 \) 
    \( 4 \) 
    \( 2 \) 

    Провери одговоре Не знам

  • 6.      

    Разлика највећег и намањег решења једначине \(\sqrt{x-3}+\sqrt{8-x}=3\) једнак је:

    \(4\)  
    \(5 \)  
    \(3\)
    \(2\)
    \( 1 \)  

    Провери одговоре Не знам

  • 7.      

    Нека је \(a_n\) аритметички низ, \(a_1=4 \). Ако је збир првих пет чланова тог низа \(90,\) тада је \(a_{15}\) једнако:

    \(  104    \)
    \(    108 \)  
    \(   106   \)
    \( 102  \)
    \(   100      \)  

    Провери одговоре Не знам

  • 8.      

    Дужина крака једнокраког троугла је \(5cm\), а висине која одговара основици \(3cm\). У тај троугао уписан је правоугаоник максималне површине тако да једна страница правоугаоника припада основици троугла. Обим тог правоугаоника је:

    11 cm
    7 cm
    8 cm
    9 cm
    10 cm

    Провери одговоре Не знам

  • 9.      

     Број решења једначине \( \sin(x-\frac{\pi}{3})=\frac{1}{2}\) у интервалу \([-2\pi, 2\pi]\) je:

     

    \(1\)
    \(5\)    
    \(3\)
    \(4\)
    \(2\)  

    Провери одговоре Не знам

  • 10.      

    Производ свих реалних решења једначине \(3|x|=12-x\) једнак је:

    \(   -6\)
    \(  -12     \)
    \(  -18     \)
    \(    6\) 
    \(    3  \) 

    Провери одговоре Не знам

  • 11.      

    У троуглу су странице \(b=3\sqrt{3}\) и \(c= 6\) , а најмањи угао \(\alpha=\frac{\pi}{6} \). Ако је трећа страница \(a < b\) , тада је \(a\) једнако:

    \( 3 \)
    \(  2\sqrt{3}    \)
    \(     \frac{3}{2}    \)  
    \(   \frac{5}{2}    \)
    \(    2     \) 

    Провери одговоре Не знам

  • 12.      

    Збир највећег негативног и најмањег позитивног решења неједначине \(\cos ^{4}x-\sin ^{4}x=1+\sin x\) је:

    \(-\frac{\pi }{6}\)
    \(-\pi\)
    \(\frac{5\pi }{6}\)
    \(\pi\)
    \(\frac{\pi }{6}\)

    Провери одговоре Не знам

  • 13.      

    Скуп свих решења неједначине \(3\cdot 81^{x}+2\cdot 16^{x}\leqslant 5\cdot 36^{x}\) је:

    \(\left [ -\frac{2}{3},0 \right ]\)        
    \(\left [ -\frac{4}{9},0 \right ]\)
    \(\left [ -\frac{1}{3},0 \right ]\)  
    \(\left [ -1,0 \right ]\)
    \(\left [ -\frac{1}{2},0 \right ]\)

    Провери одговоре Не знам

  • 14.      

    Десетоцифрених бројева чије су све цифре међусобно различите и који су дељиви са 5 има:

    \(2\cdot 9!\)
    \(10\cdot 8! \)
    \(11\cdot 9! \)
    \(2\cdot 10! \)
    \(17 \cdot 8! \)

    Провери одговоре Не знам

  • 15.      

    Ако је \(log_23=a \), тада је \(log_64\) једнако:

    \( \frac{1}{2(1+a)}  \)  
    \(  \frac{2}{1+a}  \)
    \(  -2(1+a) \)
    \(       \frac{1}{2+a}     \)  
    \(   \frac{1}{1+2a}       \)

    Провери одговоре Не знам

  • 16.      

    На сајму књига првог дана је продато \(40\%\) књига мање него другог дана, а трећег за четвртину мање него првог и другог дана заједно. Ако је прва три дана укупно продато \(10500\) књига, онда је првог дана овог сајма продато:
     

    2400 књига
    2250 књига
    2550 књига
    2700 књига
    2100 књига

    Провери одговоре Не знам

  • 17.      

     Ако су \(x_1\) и \(x_2\) решења једначине \(x^2+5x-9=0\), тада је \(x^3_1+x^3_2\) једнако:

    \(170\)
    \(-10\)        
     \(-170\)
    \(10\)  
    \(-260\)

    Провери одговоре Не знам

  • 18.      

    Ако је \(J=\frac{a+b}{a-b}\frac{a-b}{a+b}, a=\sqrt{3}, b=\sqrt{2} \) тада је \(J\) једнако:

     

    \(10\)
    \(5\)  
    \(1\)    
    \(5-2\sqrt{6}\)
     \(1+2\sqrt{6}\)

    Провери одговоре Не знам

  • 19.      

    Број различитих решења једначине \(1 + \sin 2x - 2\sin x = \cos 2x\) на интервалу \([0,3\pi]\) је:

    \(    2     \)  
    \( 6 \)
    \(     5    \)  
    \(  3    \)
    \(   4\)

    Провери одговоре Не знам

  • 20.      

     Ако је полином \(P(x)=x^{2014}+x^{2013}+ax+b\) дељив полиномом \(Q(x)=x^2-1\), тада је \(2a-5b\) једнако:


     

    \(-3\)  
    \(-7\)
    \(3\)
    \(-12\) 
    \(7\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време