Пријемни испит
Број поена
Саобраћајни, Технички, Машински и Факултет организационих наука
Вредност израза \(\frac{\cos 100^o+\sin 50^o}{\sin 200^o}\) једнака је:
Ако су \(x_1\) и \(x_2\) решења једначине \(x^2+10\sqrt{3}x+6\sqrt{3}=0\) тада је \(\frac{1}{x_1}+\frac{1}{x_2}\) једнако:
Збир квадрата свих решења једначине \(4^x=2^{\frac{x+1}{x}}\) је:
Ако је \(a=225^{\frac{1}{2}-\log_{15}\sqrt[4]{9}}\) онда је \((a-4)^{a}\) једнако:
Око праве правилне четворостране призме запремине \(128 cm^3\) описан је кружни ваљак тако да основа призме припадају одговарајућим основама ваљка. Запремина тог ваљка ( у \(cm^3\) ) износи:
Скуп свих решења неједначине \(2x+|x-1|<2\) у скупу реалних бројева је:
Производ свих реалних решења једначине \(|x|+|x-1|=x+\frac{1}{2}\) једнак је:
Збир свих девет чланова аритметичке прогресије је за \(164\) већи од збира првих пет чланова те прогресије. Ако је девети члан за \(14\) мањи од двоструке вредности шестог члана, онда је производ прва два члана дате прогресије једнак:
Тангенте постављене из тачке \(A(2,4)\) на кружницу \(x^2+y^2=2\) секу осу \(Oy\) у тачкама \(B\) и \(C\). Површина троугла \(ABC\) једнака је:
Ако је \((a,b]\cup(c,d]\) решење неједначине \(\frac{x^2+x-28}{x^2-4x-5}\geq2\), тада је \(a+b+c+d\) једнако:
Ако су странице троугла \(a=1, b=3\sqrt{2}, c=5\), тада је највећи угао једнак:
Вредност израза \(\left [ 6^2+9\cdot \left ( 5,25-10\cdot (0,5)^3 \right ) +\left ( \frac{5}{2}: \frac{(25)^{\frac{1}{2}}}{6} \right )^2 \right ]^{\frac{1}{4}}\) једнака је:
У биномном развоју \((x^3+\frac{1}{x})^{12}\), члан који не садржи \(x\) је:
Основе правог ваљка и праве купе су кругови полупречника \(12 cm\). Ако су запремине ваљка и купе једнаке, а висина купе за \(6 cm\) дужа од висине ваљка, онда је однос површина ваљка и купе једнак:
Број решења једначине \( \sin(x-\frac{\pi}{3})=\frac{1}{2}\) у интервалу \([-2\pi, 2\pi]\) je:
Ако је \(J=ab+\frac{a^2b+ab^2}{a^2-b^2}(\frac{a^2}{b}-\frac{b^2}{a}); a=1,75 ; b=1,25\) тада је \(J\) једнако:
Дате су функције \(f_1(x)=\frac{\sqrt{x^4+2x^2+1}}{x^2+1}, f_2(x)=sin^2x+cos^2x, f_3(x)=tgx\cdot ctgx\). Тачан је исказ:
Нека је \(P(x) = x^5 + ax^3 + bx\) и \(Q(x) = x^2 + 2x + 1\), где су \(a\) и \(b\) реални бројеви. Ако је полином \(P\) дељив полиномом \(Q\), тада је вредност израза \(a^2 + b^2\) једнака:
Ако је \(\sin\alpha=\frac{15}{17}, \frac{\pi}{2}<\alpha<\pi\), тада је \(\cos(\frac{\pi}{4}-\alpha)\) једнако:
Ако за комплексан број \(z\) важи \(\left | z-3 \right |=\left | z-3+2i \right |\) и \(\left | z-2i \right |=\left | z+4-2i \right | ,\) где је \(i^{2}=-1 ,\) тада је:
Тренутно нема података за приказ графикона!
Попуните образац за слање ваших резултата вашем наставнику.