Задаци

  • 1.      

    Тангенте постављене из тачке \(A(2,4)\) на кружницу \(x^2+y^2=2\) секу осу \(Oy\) у тачкама \(B\) и \(C\). Површина троугла \(ABC\) једнака је:

     

    \(12\)
    \(6 \)       
     \(8\)
    \(10\)  
    \(16\)

    Провери одговоре Не знам

  • 2.      

    У развоју \(\left ( \sqrt[4]{3}+\sqrt[3]{2} \right )^{2012}\) број чланова који су цели бројеви једнак је:

    \(671 \)
    \(504 \)
    \(168 \)
    \(503\)
    \(167 \)

    Провери одговоре Не знам

  • 3.      

    На колико начина се од 6 девојака и  7 младића може саставити екипа од 5 чланова, тако да у екипи буду 3 девојке и 2 младића?

     

    \(41\)  
    \(945\)  
    \(420\)
    \(512\)
    \(128\)    

    Провери одговоре Не знам

  • 4.      

    Нека је \(a_n\) аритметички низ, \(a_1=4 \). Ако је збир првих пет чланова тог низа \(90,\) тада је \(a_{15}\) једнако:

    \(    108 \)  
    \(   100      \)  
    \( 102  \)
    \(   106   \)
    \(  104    \)

    Провери одговоре Не знам

  • 5.      

    Шестоцифрених бројева дељивих са 2, код којих су све цифре различите, направљених од цифара 0 , 1, 2 , 3 , 4 , 5 има:

    \(   120   \)
    \(    216  \)  
    \(  360    \)
    \(            288      \)  
    \( 312   \)

    Провери одговоре Не знам

  • 6.      

     Ако је у аритметичкој прогресији први члан \(a_1=16\), а збир првих девет чланова \(S_9=0\), тада је збир првих \(19\) чланова \(S_{19}\):

     

    \(310\)
     \(-264\)
    \(84\)  
    \(-380\)
     \(106\)  

    Провери одговоре Не знам

  • 7.      

     Нека је \(f(x)=\frac{1-x}{1+x}\) за \(x\neq -1\) и \(g(x)=\frac{1}{x^2+1} .\) Тада је вредност једнака:

    \(2 \)
    \(-2 \)
    \(-1 \)
    \(1 \)
    \(0 \)

    Провери одговоре Не знам

  • 8.      

    Дате су функције \(f_1(x)=x, f_2(x)=\sqrt{x^2}\) и \(f_3(x)=(\sqrt{x})^2 .\) Тачан је исказ:

    \(   f_1 \neq f_2 = f_3   \)
    \(  f_1\neq f_2 \neq f_3 \neq f_1 \)
    \(   f_3 = f_1 \neq f_2   \)  
    \( f_1 = f_2 \neq f_3    \) 
    \(  f_1 = f_2 = f_3  \)

    Провери одговоре Не знам

  • 9.      

    Ако је \(log_23=a \), тада је \(log_64\) једнако:

    \(  -2(1+a) \)
    \(   \frac{1}{1+2a}       \)
    \( \frac{1}{2(1+a)}  \)  
    \(       \frac{1}{2+a}     \)  
    \(  \frac{2}{1+a}  \)

    Провери одговоре Не знам

  • 10.      

    Ако је \(sin\alpha=\frac{5}{13}, \frac{\pi}{2}<\alpha<\pi, cos\beta=-\frac{3}{5}, \pi<\beta<\frac{3\pi}{2}\) , тада је \(cos(\alpha + \beta)\) једнако:

    \(     \frac{16}{65}   \)  
    \(   -\frac{56}{65}   \)
    \(  \frac{36}{65}   \)
    \( \frac{56}{65}  \)
    \(    -\frac{16}{65}     \)  

    Провери одговоре Не знам

  • 11.      

    Број решења једначине \(\sqrt{7-x}=x-1\) је:

    \( 1 \)
    \( 2 \) 
    \( 3 \) 
    \( 4 \) 
    више од\( 4 \) 

    Провери одговоре Не знам

  • 12.      


     Број решења једначине \(2\sin^2x=\sin2x\) на интервалу \([-\pi,\pi]\) једнак је

    6
    3      
    4
    5

    Провери одговоре Не знам

  • 13.      

    Нека је \(P(x) = x^5 + ax^3 + bx\) и \(Q(x) = x^2 + 2x + 1\), где су \(a\) и \(b\) реални бројеви. Ако је полином  \(P\) дељив полиномом \(Q\), тада је вредност израза \(a^2 + b^2\) једнака:

     

    \(10\)
    \(2\)
    \(13\)
    \(5\)
    \(8\)

    Провери одговоре Не знам

  • 14.      

    Први члан геометријске прогресије је \(a_1=3\) а шести члан је \(a_6=96\) . Збир првих десет чланова \(S_10\) је:

    \( 3069 \)
    \( 1023 \) 
    \( 6160 \) 
    \( 3080 \) 
    \( 369 \) 

    Провери одговоре Не знам

  • 15.      

    Ако је збир свих решења једначине \(1+\log_{2}(2^{x}-1)=\log_{2^{x}-1}64 ,\) онда је вредност \(2a+3\) једнака:

    \(30 \)
    [math]32 [/math
    \(15 \)
    \(45 \)
    \(64 \)

    Провери одговоре Не знам

  • 16.      

    Комплексни број \(\frac{11+2i}{3-4i}\) једнак је:

     

     \(1-i\)
    \(2-i\)
    \(1+2i\)
    \(1-2i\)  
    \(2+i\)      

    Провери одговоре Не знам

  • 17.      

    Ако за комплексан број \(z\) важи \(\frac{\left | z-1+i \right |}{\left | z-2+2i \right |}=1\) и \(\frac{\left | z \right |}{\left | z-1-i \right |}=1\), гдеје \( i^2 = -1\), тада је \(Im(\bar{z}\cdot i)\) једнак:

     

    \(-1\)  
    \(-2\)
    \(2\)
    \(0\)
    \(1\)       

    Провери одговоре Не знам

  • 18.      

    Нека је \(S\) скуп свих целобројних вредности параметра \(m\) за које једначина \(x^2-(m-3)x+5+m=0\) има оба решења негативна. Број елемената скупа \(S\) је:

     

    \(6\)  
    \(4\)
    \(>7\)
    \(3\)    
    \(7 \)  

    Провери одговоре Не знам

  • 19.      

      Производ свих решења једначине \(4^{x-\frac{1}{x}}+16^{x-\frac{1}{x}}=72\) једнак је:

     

     \(1\)  
     \(-6\)
    \(6      \)
    \(4\)
    \(-1\)

    Провери одговоре Не знам

  • 20.      

    Број свих целобројних решења неједначине \(\frac{4x^{2}-5x-39}{x^{2}-x-12}\leqslant 3\) је:

    \(2\)
    \(1 \)
    \(6\)
    \(0 \)
    \(3 \)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време