Пријемни испит
Број поена
Саобраћајни, Технички, Машински и Факултет организационих наука
Нека је \(P(x) = x^5 + ax^3 + bx\) и \(Q(x) = x^2 + 2x + 1\), где су \(a\) и \(b\) реални бројеви. Ако је полином \(P\) дељив полиномом \(Q\), тада је вредност израза \(a^2 + b^2\) једнака:
Збир свих решења једначине\( \sqrt{2x^2 - x + 3} = x +1\) je:
Шестоцифрених бројева дељивих са 2, код којих су све цифре различите, направљених од цифара 0 , 1, 2 , 3 , 4 , 5 има:
Нека је \(f(x) = x^2 + 1\) и \(g(x) = 3x - 2\). Тада је вредност \(f(g^{-1} (4)) - g^{-1} (f(3))\) једнака:
Једначина праве која пролази кроз тачке \(A(-1,1)\) и \(B(1,4)\) гласи:
У биномном развоју \((x^3+\frac{1}{x})^{12}\), члан који не садржи \(x\) је:
Производ свих реалних решења једначине \( \sqrt{10+x}-\sqrt{5-x}=\sqrt{1+x}\) једнак је:
Ако је запремина правог ваљка \(V=6\pi\), а површина његовог омотача \(M=4\pi\), тада је однос полупречника основе \(r \) и висине \(H, \frac{r}{H}\) једнак:
Ако бочна ивица правилне четворостране пирамиде има дужину \(6cm\) и заклапа угао \(45^{\circ}\) са равни основе, запремина пирамиде је:
У троуглу су странице \(b=3\sqrt{3}\) и \(c= 6\) , а најмањи угао \(\alpha=\frac{\pi}{6} \). Ако је трећа страница \(a < b\) , тада је \(a\) једнако:
Израз \((a^{-1}+b^{-1})^{-1}:(b^{-1}-a^{-1})^{-1}, (a,b\neq0, a\neq b)\) идентички је једнак изразу:
Ако је првобитна цена књиге од \(500\) динара смањена најпре за \(10\%\), а затим за \(20\%\), нова цена књиге (у динарима) је:
Вредност израза \(\left [ 4^{-1}\left ( \frac{1}{25} \right )^{-\frac{1}{2}}+\left ( \sqrt{(-2)^{2}}-1,8 \right )^{-1} \right ]^{\frac{1}{2}}\cdot \left ( \sqrt[3]{(-1)^{3}}+2,2 \right )\) једнака је:
Површина правог ваљка је \(P = 8\pi cm^2 \), а висина му је за \(1cm\) краћа од пречника основе. Запремина ваљка је:
Ако се број страница конвексног \(n\)-тоугла повећа зa \(7\), број дијагонала му се повећа за \(119\). Број \(n\) износи:
Збир свих решења једначине \(\cos ^{2}\frac{\alpha }{2}+\cos ^{2}\alpha =\frac{1}{2}\) која припадају интервалу \((\pi ,2\pi )\) једнак је:
Нека је \(f(x)=\frac{1-x}{1+x}\) за \(x\neq -1\) и \(g(x)=\frac{1}{x^2+1} .\) Тада је вредност једнака:
На колико начина се од 6 девојака и 7 младића може саставити екипа од 5 чланова, тако да у екипи буду 3 девојке и 2 младића?
Све вредности параметра \(p\) , за које за решења \(x_1\) и \(x_2\) једначине \(x^2-px+6=0\) важи релација \(x_1-x_2 = 1\) , припадају скупу:
Вредност израза \( \frac{3}{\sqrt{2}+1}+\frac{4}{\sqrt{2}+2}+\frac{7}{\sqrt{2}+3}\) je:
Тренутно нема података за приказ графикона!
Попуните образац за слање ваших резултата вашем наставнику.