Задаци

  • 1.      

    Ако је лопта запремине \(V_1\) уписана у коцку запремине \(V_2\) , тада је \(\frac{V_1}{V_2}\) једнако:

    \(  \frac{\pi}{6}  \)
    \(    \frac{2\pi}{9}    \) 
    \(   \frac{\pi}{4}    \)  
    \(   \frac{\pi}{3} \)
    \(  \frac{\pi}{8}    \)

    Провери одговоре Не знам

  • 2.      

     Вредност израза \(\left [ 4^{-1}\left ( \frac{1}{25} \right )^{-\frac{1}{2}}+\left ( \sqrt{(-2)^{2}}-1,8 \right )^{-1} \right ]^{\frac{1}{2}}\cdot \left ( \sqrt[3]{(-1)^{3}}+2,2 \right )\) једнака је:

    \(5\)  
    \(3\)
    \(8\)    
    \(\frac{3}{5}\)
    \(\frac{8}{5}\)

    Провери одговоре Не знам

  • 3.      

    Број свих решења једначине \(log_3(x+1)-log_3(3x-1)+log_3(5x-4)=2log_3(x-2)\) је:

    \(  3    \)
    \( 1 \)
    већи од \(     3     \)   
    \(   0\)
    \(    2     \)  

    Провери одговоре Не знам

  • 4.      

      Производ свих решења једначине \(4^{x-\frac{1}{x}}+16^{x-\frac{1}{x}}=72\) једнак је:

     

     \(-6\)
    \(-1\)
     \(1\)  
    \(6      \)
    \(4\)

    Провери одговоре Не знам

  • 5.      

    Израз \(\cos(\alpha + \beta)\cos(\alpha - \beta)- \sin(\alpha + \beta)\sin(\alpha - \beta)\) идентички је једнак изразу:

     

    \(\cos2\alpha\) 
    \(\sin2\alpha\)     
     \(1+ \sin(2\alpha - 2\beta)\)
    \(\cos\alpha\)
     \(1\)

    Провери одговоре Не знам

  • 6.      

     Ако је збир првих једанаест чланова геометријске прогресије \(S_{11}= 6141\), a количник \(q = 2\), први члан \(a_1\) је:

     

    \(3\)
    \(5\)  
    \(7\)      
    \(4\)  
    \(1\)

    Провери одговоре Не знам

  • 7.      

    Збир квадрата свих решења једначине \( |x + 4| - |x - 3| = x\) je:


     
     

     \(100\)
    \(50\)
    \(59\)
    \(99\)
    \(41\)       

    Провери одговоре Не знам

  • 8.      

     Ако је \(log_\sqrt{5}\), тада је \(log_{10}2\) једнако: 

     

     \(\frac{1}{2(a+1)} \)  
    \(\frac{1}{2a+1}\)
    \(\frac{a+1}{2}\)     
    \(\frac{1}{a+2}\)
    \(\frac{2}{a+1}\)

    Провери одговоре Не знам

  • 9.      

    Око праве правилне четворостране призме запремине \(128 cm^3\) описан је кружни ваљак тако да основа призме припадају одговарајућим основама ваљка. Запремина тог ваљка ( у \(cm^3\) ) износи:

    \(72\pi \)
    \(32\sqrt{3}\pi \)
    \(56\pi \)
    \(48\pi\)
    \(64 \pi \)

    Провери одговоре Не знам

  • 10.      

    Тангенте постављене из тачке \(A(2,4)\) на кружницу \(x^2+y^2=2\) секу осу \(Oy\) у тачкама \(B\) и \(C\). Површина троугла \(ABC\) једнака је:

     

     \(8\)
    \(16\)
    \(6 \)       
    \(12\)
    \(10\)  

    Провери одговоре Не знам

  • 11.      

     Ако је \(a=225^{\frac{1}{2}-\log_{15}\sqrt[4]{9}}\) онда је \((a-4)^{a}\) једнако:

    \(-1 \)
    \(64 \)
    \(0 \)
    [math]4 [/math
    \(1 \)

    Провери одговоре Не знам

  • 12.      

    Површина правог ваљка је \(P = 8\pi cm^2 \), а висина му је за \(1cm\) краћа од пречника основе. Запремина ваљка је:

    \( \frac{40}{9}\pi cm^3 \) 
    \( \frac{80}{27}\pi cm^3 \)
    \( 5\pi cm^3 \) 
    \( \frac{40}{27}\pi cm^3 \) 
    \( 3\pi cm^3 \) 

    Провери одговоре Не знам

  • 13.      

     Скуп свих решења неједначине \(\frac{x-1}{x-3}<\frac{x+8}{x+4}\) je

    празан скуп    
     \((-\infty,-4)\cup(3,+\infty)\)    
    \((-8,-4)\)
    \((-4,3)\) 
    \((-4,0)\)

    Провери одговоре Не знам

  • 14.      

    У троуглу су странице \(b=3\sqrt{3}\) и \(c= 6\) , а најмањи угао \(\alpha=\frac{\pi}{6} \). Ако је трећа страница \(a < b\) , тада је \(a\) једнако:

    \(  2\sqrt{3}    \)
    \( 3 \)
    \(     \frac{3}{2}    \)  
    \(    2     \) 
    \(   \frac{5}{2}    \)

    Провери одговоре Не знам

  • 15.      

    Ако су \(x_1\) и \(x_2\) решења једначине \(x^2+10\sqrt{3}x+6\sqrt{3}=0\) тада је \(\frac{1}{x_1}+\frac{1}{x_2}\) једнако:

    \( -\frac{5}{3}     \)
    \(  -\frac{\sqrt{3}}{6}     \)
    \(            \frac{5}{3}          \)  
    \(    -\frac{3}{5}   \)  
    \(   \frac{3}{5}     \)

    Провери одговоре Не знам

  • 16.      

    3. Израз\( \frac{1}{a+\frac{1}{b+\frac{1}{a}}}\cdot\frac{1}{b+\frac{1}{a}}\cdot \frac{1}{b+\frac{1}{a+\frac{1}{b}}}\cdot\frac{1}{a+\frac{1}{b}}\), за оне вредности променљивих \(a\) и \(b\) за које је дефинисан, идентички је једнак изразу:

    [math]\frac{a+1}{ab}[math]
     [math]a-b[math]    
    [math]ab+1[math]    
    [math]0 [math] 
    [math]\frac{ab +1}{ab}[math]

    Провери одговоре Не знам

  • 17.      

    Нека је \(P(x) = x^5 + ax^3 + bx\) и \(Q(x) = x^2 + 2x + 1\), где су \(a\) и \(b\) реални бројеви. Ако је полином  \(P\) дељив полиномом \(Q\), тада је вредност израза \(a^2 + b^2\) једнака:

     

    \(2\)
    \(5\)
    \(8\)
    \(13\)
    \(10\)

    Провери одговоре Не знам

  • 18.      

    Број свих целобројних решења неједначине \(\frac{4x^{2}-5x-39}{x^{2}-x-12}\leqslant 3\) је:

    \(6\)
    \(0 \)
    \(1 \)
    \(3 \)
    \(2\)

    Провери одговоре Не знам

  • 19.      

     Ако је полином \(P(x)=x^{2014}+x^{2013}+ax+b\) дељив полиномом \(Q(x)=x^2-1\), тада је \(2a-5b\) једнако:


     

    \(7\)
    \(3\)
    \(-12\) 
    \(-7\)
    \(-3\)  

    Провери одговоре Не знам

  • 20.      

    Нека је \(S\) скуп свих целобројних вредности параметра \(m\) за које једначина \(x^2-(m-3)x+5+m=0\) има оба решења негативна. Број елемената скупа \(S\) је:

     

    \(7 \)  
    \(6\)  
    \(4\)
    \(>7\)
    \(3\)    

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време