Пријемни испит
Број поена
Саобраћајни, Технички, Машински и Факултет организационих наука
Број решења једначине \(|x-1|+2x=5\) је:
Дате су функције \(f_1(x)=\frac{\sqrt{x^4+2x^2+1}}{x^2+1}, f_2(x)=sin^2x+cos^2x, f_3(x)=tgx\cdot ctgx\). Тачан је исказ:
Ако је запремина правог ваљка \(V=6\pi\), а површина његовог омотача \(M=4\pi\), тада је однос полупречника основе \(r \) и висине \(H, \frac{r}{H}\) једнак:
Решење једначине \(log_2(3x-7)=5\) je:
Скуп свих решења неједначине \(\frac{|x-2|}{x^2-3x+2}\geq 2\) у скупу реалних бројева je:
Израз \((a^{-1}+b^{-1})^{-1}:(b^{-1}-a^{-1})^{-1}, (a,b\neq0, a\neq b)\) идентички је једнак изразу:
Производ свих решења једначине \(4^{x-\frac{1}{x}}+16^{x-\frac{1}{x}}=72\) једнак је:
Комплексни број \(\frac{11+2i}{3-4i}\) једнак је:
Једначина тангентне елипсе \(\frac{x^2}{16}+\frac{y^2}{12}=1\) која пролази кроз тачку \(A(2,3)\) гласи:
Производ свих реалних решења једначине \(3|x|=12-x\) једнак је:
Ако 12 радника, радећи 5 дана, зараде 125000 динара, 15 радника за 6 дана заради:
Ако су \(x_1\) и \(x_2\) решења једначине \(x^2+5x-9=0\), тада је \(x^3_1+x^3_2\) једнако:
Збир квадрата свих решења једначине \( |x + 4| - |x - 3| = x\) je:
Укупна цена две књиге износи \(2600\) . Уколико би се цена прве књиге увећала за \(150\) динара и цена друге умањила за \(150\) динара, тада би цена друге износила \(30\%\) цене прве књиге. Разлика цене прве и друге књиге (у динарима) једнака је:
Вредност израза \(\left [ 6^2+9\cdot \left ( 5,25-10\cdot (0,5)^3 \right ) +\left ( \frac{5}{2}: \frac{(25)^{\frac{1}{2}}}{6} \right )^2 \right ]^{\frac{1}{4}}\) једнака је:
Десетоцифрених бројева чије су све цифре међусобно различите и који су дељиви са 5 има:
Ако је \(a\neq -\frac{1}{2}\) и \(\left | a \right |\neq 2\) , онда је израз \(\left ( \frac{2a+1}{a+2}-\frac{4a+2}{4-a^{2}} \right ):\frac{2a+1}{a-2}+\left ( \frac{a+2}{2} \right )^{-1}\) идентички једнак изразу:
Скуп свих вредности реалног параметра \(m\) за које су решења једначине \(mx^2 - 2mx + m - 2 = 0\) различитог знака је:
Ако је \((x ,y), x, y\in R, 0 < x \leq y\), решење система једначина \(x^2+y^2=51, xy=12\) тада је \(y - x^3\) једнако:
Ако за комплексан број \(z\) важи \(\left | z-3 \right |=\left | z-3+2i \right |\) и \(\left | z-2i \right |=\left | z+4-2i \right | ,\) где је \(i^{2}=-1 ,\) тада је:
Тренутно нема података за приказ графикона!
Попуните образац за слање ваших резултата вашем наставнику.