Задаци

  • 1.      

    Странице троугла су \(21\) и \(9\sqrt{2} ,\) а њима захваћени угао \(45^o .\) Збир полупречника уписаног и описаног круга тог троугла је:

    \(6(\sqrt{2}+1) \)
    \(6(\sqrt{2}-1) \)
    \(6(\sqrt{3}+2) \)
    \(3(-\sqrt{3}+2) \)
    \(6(\sqrt{3}-\sqrt{2}) \)

    Провери одговоре Не знам

  • 2.      

    Ако су \(A\) и \(B\) тачке на кругу \(x^2  + y^2  + 4x + 4y + 5  =  0\) најдаље и најближе тачки \(C(1, 2)\) онда је \(AC + BC\) једнако: 
     

     

    \(10\)  
    \(5\sqrt{3}\)
    \(5-\sqrt{3}\)
    \(5\sqrt{3}+5\)  
    \(5\)  

    Провери одговоре Не знам

  • 3.      

    Израз \(a \sqrt{a} \cdot \sqrt[4]{a^3}\), \(a \geq 0\), идентички је једнак изразу:

    \(a^2\)
    \(\sqrt[4]{a^{11}}\)
    \(\sqrt[4]{a^9}\)
    \(a^6\)
    \(\sqrt[4]{a^7}\)

    Провери одговоре Не знам

  • 4.      

    Ако је \(f(x − 1)=\frac{2x-1}{x+2}\) онда је \(f(f(x))\)  једнако:

     

     \(\frac{2x+1}{x+3}\)
    \(\frac{x+1}{x+2}\)  
    \(\frac{5x+3}{5x+1}\)  
    \(1\)
    \(\frac{2x-1}{x+2}\)

    Провери одговоре Не знам

  • 5.      

    Решење једначине \(2^{16^{x}}=16^{2^{x}}\) јесте:

    \(\frac{4}{5} \)
    \(\frac{2}{3} \)
    \(\frac{5}{6} \)
    \(\frac{1}{2} \)
    \(\frac{3}{4} \)

    Провери одговоре Не знам

  • 6.      

    Ако су \(\alpha\) и \(\beta\) решења једначине \(x^2-2x+5=0\), онда је \(\frac{​\alpha^2+\alpha \beta+ \beta^2}{\alpha^3+\beta^3}\) једнако:

    \(\frac{1}{22}\)
    \(-\frac{1}{22}\)
    \(\frac{1}{11}\)
    \(-\frac{1}{2}\)
    \(\frac{1}{2}\)

    Провери одговоре Не знам

  • 7.      

    Која од наведених релација постоји између решења \(x_1\) и \(x_2\) квадратне једначине \((1+m)x^{2}-(6+5m)x+5+6m=0, (m\in \mathbb{R}, m\neq 1) ?\)

    \(4 x_1x_2+x_1+x_2=2 \)
    \(x_1x_2+x_1+x_2-11=0 \)
    \(-x_1x_2+x_1+x_2-4=0 \)
    \(-x_1x_2+x_1+x_2+2=0 \)
    \(3x_1x_2+x_1+x_2-1=0 \)

    Провери одговоре Не знам

  • 8.      

    Вредност израза \(\left( 1-sin\frac{\pi}{8} \right)\left( 1+sin\frac{\pi}{8} \right)\) је:

    \(\frac{\sqrt{2}}{8}\)
    \(\frac{2-\sqrt{2}}{4}\)
    \(\frac{\sqrt{2}}{4}\)
    \(\frac{1}{4}\)
    \(\frac{2+\sqrt{2}}{4}\)

    Провери одговоре Не знам

  • 9.      

    У оштроуглом троуглу странице су \(a = 1\) и \(b=2\), а површина \(P=\frac{12}{13}\). Дужина треће странице \(c\) тог троугла једнака је:

    \(\frac{3\sqrt{5}}{\sqrt{13}}\)
    \(\frac{4\sqrt{5}}{\sqrt{13}}\)
    \(\frac{\sqrt{85}}{\sqrt{13}}\)
    \(\frac{5\sqrt{5}}{\sqrt{13}}\)
    \(\frac{2\sqrt{5}}{\sqrt{13}}\)

    Провери одговоре Не знам

  • 10.      

    У правој купи угао између изводнице и висине је \(60^{\circ}\) а изводница је за \(2cm\) дужа од висине. Колика је запремина те купе?

     

    \(\pi^2 cm^3\)    
    \(\frac{\pi}{3} cm^3\)
     \(\frac{\pi}{2} cm^3\)  
    \(\pi cm^3\)
    \(8\pi cm^3\)

    Провери одговоре Не знам

  • 11.      

    Ако је \(k \in R\), \(i^{2}=-1\), тада је могудо комплексног броја \(\left(\frac{1+i}{1-i}\right)^{2015}+\frac{-1+5ki}{3i}-1\) најмањи за \(k\) једнако:

    \(0\)
    \(3\)
    \(\frac{3}{5}\)
    \(\frac{1}{3}\)
    \(-\frac{1}{2}\)

    Провери одговоре Не знам

  • 12.      

    Најмања вредност функције \(f(x)=4x+\frac{9\pi ^{2}}{x}+\sin x, x>0\) је:
     

    \(12\pi -1 \)
    \(5\pi +2 \)
    \(3\pi +1 \)
    \(\frac{5\pi}{2}\)
    \(\frac{\pi^2-1}{2} \)

    Провери одговоре Не знам

  • 13.      

    Укупан број реалних решења једначине \(\sqrt{3\cdot 2^{\log_{10}2x}+1}+\sqrt{2\cdot 2^{\log_{10}2x}+9}=\sqrt{13\cdot 2^{\log_{10}2x}-4}\) је:

    Ниједан од понуђених одговора
    \(3 \)
    \(1 \)
    \(0 \)
    \(2 \)

    Провери одговоре Не знам

  • 14.      

    Око кружнице полупречника \(2cm\) описан је једнакокраки трапез површине \(20cm^2\). Дужина његовог крака је:

     

    \(5cm\)  
    \(10cm\)      
    \(20cm\)
     такав трапез не постоји
    \(6cm\)

    Провери одговоре Не знам

  • 15.      

    Једначина \(\sqrt{1-x}=-x\) :

    има тачно два решења
    има тачно једно решење и оно је позитивно
    има више од два решење
    има тачно једно решење и оно је негативно
    нема решења                

    Провери одговоре Не знам

  • 16.      

    Највећа вредност функције \(f(x) = |2x + 1| + |x − 3| − |5x − 4|\) ,  \(x \in R\)  је:

    \(4,8\)
    \(2,6\) 
    \(2\)      
    \(−3\)    
    \(−4\)

    Провери одговоре Не знам

  • 17.      

    Сва реална решења једначине \(\frac{x+\sqrt{3}}{\sqrt{3}+\sqrt{x+\sqrt{3}}}+\frac{x-\sqrt{3}}{\sqrt{3}-\sqrt{x-\sqrt{3}}}=\sqrt{x}\) налазе се у скупу:

    \(\emptyset\)
    \([\sqrt{3},2\sqrt{3})\)
    \((2\sqrt{3},3\sqrt{3})\)
    \([6,8)\)
    \([3\sqrt{3},6)\)

    Провери одговоре Не знам

  • 18.      

    Прав ваљак и права купа имају заједничку основу. Врх купе је центар друге основе ваљка. Ако је однос висине ваљка и изводнице купе \(4:5\), тада је однос површина ваљка и купе једнак:

    \(4:3\)
    \(7:4\)
    \(3:2\)
    \(7:5\)
    \(8:5\)

    Провери одговоре Не знам

  • 19.      

    Ако је \(a\in \mathbb{R}\) и \(\left | a+\frac{1}{a} \right |=3\) тада је \(\left | a-\frac{1}{a} \right |\) једнако:

    \(\sqrt{5} \)
    \(\sqrt{7} \)
    \(0 \)
    \(\sqrt{2} \)
    \(\sqrt{3} \)

    Провери одговоре Не знам

  • 20.      

    Збир првих 2012 чланова аритметичке прогресије \(\frac{2011}{2012}, \frac{2010}{2012}, \frac{2009}{2012}, \cdots \) износи:

    \(\frac{2013}{2} \)
    \(\frac{2013}{4} \)
    \(\frac{2011}{2} \)
    Ни један од понуђених одговора
    \(\frac{2011}{4} \)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време