Пријемни испит
Број поена
Електротехнички,Природно Математички и Фармацеутски факултет
Једна катета правоуглог троугла је \(8cm\), а хипотенуза је \(17cm\). Полупречник уписаног круга тог троугла је:
Скуп свих решења неједначине \(\frac{\left | 1-x \right |}{1-\left | x \right |}<\frac{1+\left | x \right |}{\left | 1+x \right |}\) је облика (за неке реалне бројеве \(a\) и \(b\) такве да је \(0 < a < b < + \infty ):\)
Ако је \(i^{2}=-1\) и \(\varepsilon\) комплексан број који задовољава услов \(\varepsilon ^{2} + \varepsilon +1=0 ,\) тада је решење једначине \(\frac{x-1}{x+1}=\varepsilon \frac{1+i}{1-i}\) по \(x\) једнако:
Коефициент уз \(x^{27}y^{2}\) у развоју бинома \(\left ( x^{3}+\sqrt{y} \right )^{13}\) једнак је:
Број парова \((p,q), p,q \in R\) таквих да је полином \(x^4+px^2+q\) дељив полиномом \(x^2+px+q\), једнак је:
Највећа могућа запремина праве купе чија изводница има дужину \(s\) је:
Средиште горње основе коцке и средишта ивица њене доње основе су темена пирамиде. Ако је ивица коцке \(2cm\), површина омотача пирамиде је:
Вредност израза \(8\sin ^2 80^o-2\sqrt{3}\sin 40^o-2\cos 40^o\) једнака је:
Укупан број реалних решења једначине \(\sqrt{3\cdot 2^{\log_{10}2x}+1}+\sqrt{2\cdot 2^{\log_{10}2x}+9}=\sqrt{13\cdot 2^{\log_{10}2x}-4}\) је:
За коју вредност реалног параметра \(m\) израз \(x_1^3 + x_2^3\), где су \(x_1\) и \(x_2\) решења квадратне једначине \(x^2 − x + m^2 + 2m − 3 = 0\), узима максималну вредност?
Једначина \(\sqrt{1-x}=-x\) :
Скуп решења неједначине \(\log_2(\log_4 x) + \log_4(\log_2 x) < 2\) је:
Нека је \(\DeclareMathOperator\tg{tg} \DeclareMathOperator\ctg{ctg} f_1(x)=1, f_2(x)= \tg{\frac{x}{2}}\ctg{\frac{x}{2}}\) и \(\DeclareMathOperator\tg{tg} \DeclareMathOperator\ctg{ctg} f_3(x)= \frac{|\sin x|}{\sqrt{1-\cos^2x}}\). Тачно је тврђење:
Ако је \(f(x − 1)=\frac{2x-1}{x+2}\) онда је \(f(f(x))\) једнако:
Растојање координатног почетка \(O\) правоуглог координатног система \(xOy\) од праве задате једначином \(y=3x+5\) је:
Укупан број дијагонала правилног десетоугла је:
Коефицијент уз \(x^{24}\) у развијеном облику степена бинома \((x^2 − 2x)^{13}\) је:
Максимална запремина ваљка уписаног у лопту полупречника \(R\) је:
Израз \(a \sqrt{a} \cdot \sqrt[4]{a^3}\), \(a \geq 0\), идентички је једнак изразу:
Тренутно нема података за приказ графикона!
Попуните образац за слање ваших резултата вашем наставнику.