Пријемни испит
Број поена
Електротехнички,Природно Математички и Фармацеутски факултет
Ако је \(a=\log_{2}3\) и \(b=\log_{5}2 \), тада је \(\log_{24}50\) једнако:
Тангента криве \(y=e^{-x} (x>-1)\), сече координатне осе у тачкама \(A\) и \(B\). Ако је \(O\) координатни почетак, максимална површина троугла \(AOB\) износи:
Ако за дијагонале ромба важи једнакост \(d_1=(2-\sqrt{3})d_2\), тада је оштар угао ромба једнак:
Која од наведених релација постоји између решења \(x_1\) и \(x_2\) квадратне једначине \((1+m)x^{2}-(6+5m)x+5+6m=0, (m\in \mathbb{R}, m\neq 1) ?\)
Број \((1 + i\sqrt{3})^n\) је реалан ако и само ако ( \(k\) је цео број):
Кружница пролази кроз крајње тачке једне странице квадрата и кроз средиште наспрамне странице. Ако је страница квадрата дужине \(a\), онда је пречник кружнице једнак:
Ако је \(k \in Z\) и \(0,0010101 \cdot 10^{k}>1001\), која је намања могућа вредност за \(k\)?
Ако је \(f(x − 1)=\frac{2x-1}{x+2}\) онда је \(f(f(x))\) једнако:
Странице троугла су \(21\) и \(9\sqrt{2} ,\) а њима захваћени угао \(45^o .\) Збир полупречника уписаног и описаног круга тог троугла је:
У једнакокраком \(ABC\) троуглу је \(AB=BC=b\), \(AC=a\) и \(\sphericalangle ABC=20^{\circ}\). тада је израз \(\frac{a^2}{b^2}+\frac{b}{a}\) једнак:
Збир свих целих бројева који задовољавају једначину \(\frac{x}{x+2} \leq \frac{1}{1-x}\) је:
Ако су \(A\) и \(B\) тачке на кругу \(x^2 + y^2 + 4x + 4y + 5 = 0\) најдаље и најближе тачки \(C(1, 2)\) онда је \(AC + BC\) једнако:
Скуп решења неједначине \(\log_2(\log_4 x) + \log_4(\log_2 x) < 2\) је:
Укупан број дијагонала правилног десетоугла је:
Бројеви \(a, b, c\) су узастопни чланови растућег аритметичког низа, а бројеви \(a,b,c+1\) су узастопни бројеви геометријског низа. Ако је \(a+b+c=18\), онда је \(a^2+b^2+c^2\) једнако:
Aко је \(f(x)=x^3-3x\) и \(g(x)=\sin \frac{\pi }{12}x\) тада је \(f(g(2))\) једнако:
Реалан део комплексног броја \( \frac{1}{2-\sqrt{5}+i\sqrt{3}}\) је:
Број \({\left( 1+i \sqrt{3}\right)}^n\), где је \(i^2=-1\), је реалан ако и само ако за неки цео број \(k\) важи:
Једначина \(\sqrt{1-x}=-x\):
Ако је \(N\) број шестоцифрених бројева који у свом запису садрже цифру 1 бар на једном месту, тада \(N\) припада интервалу:
Тренутно нема података за приказ графикона!
Попуните образац за слање ваших резултата вашем наставнику.