Задаци

  • 1.      

    Ако се зна да је полином \(x^{3}+ax^{2}+bx-4, (a,b\in \mathbb{R})\) дељив полиномом \(x^{2}-1 \), тада збир \(a^{2}+ b ^{2}\) износи:

    \(5 \)
    \(1 \)
    \(3 \)
    \(14 \)
    \(17 \)

    Провери одговоре Не знам

  • 2.      

    Дата је аритметичка прогресија \(a_{1},a_{2},a_{3},\dots\) чија је разлика \(d=1\), а збир првих \(98\) чланова \(a_{1}+a_{2}+ \cdots+a_{98}=137\). Тада је збир \(a_{2}+a_{4}+a_{6}+ \cdots+a_{98}\) једнак:

    \(141\)
    \(103\)
    \(93\)
    \(88\)
    \(127\)

    Провери одговоре Не знам

  • 3.      

    Број \({\left( 1+i \sqrt{3}\right)}^n\), где је \(i^2=-1\), је реалан ако и само ако за неки цео број \(k\) важи:

    \(n=3k+2\)
    \(n=6k\)
    \(n=3k+1\)
    \(n=2k\)
    \(n=3k\)

    Провери одговоре Не знам

  • 4.      

    Ако је \(N\) број шестоцифрених бројева који у свом запису садрже цифру 1 бар на једном месту, тада \(N\) припада интервалу:

    \([3 \cdot 10^5, 4 \cdot 10^5)\)
    \([5 \cdot 10^5, 6 \cdot 10^5)\)
    \([10^5, 2 \cdot 10^5)\)
    \([2 \cdot 10^5, 3 \cdot 10^5)\)
    \([4 \cdot 10^5, 5 \cdot 10^5)\)

    Провери одговоре Не знам

  • 5.      

    Укупан број реалних решења једначине \(\sqrt{3\cdot 2^{\log_{10}2x}+1}+\sqrt{2\cdot 2^{\log_{10}2x}+9}=\sqrt{13\cdot 2^{\log_{10}2x}-4}\) је:

    \(2 \)
    \(0 \)
    Ниједан од понуђених одговора
    \(1 \)
    \(3 \)

    Провери одговоре Не знам

  • 6.      

    Једначина \(\sqrt{1-x}=-x\) :

    има више од два решење
    има тачно два решења
    има тачно једно решење и оно је позитивно
    нема решења                
    има тачно једно решење и оно је негативно

    Провери одговоре Не знам

  • 7.      

    Ако је \(f(x − 1)=\frac{2x-1}{x+2}\) онда је \(f(f(x))\)  једнако:

     

     \(\frac{2x+1}{x+3}\)
    \(\frac{x+1}{x+2}\)  
    \(\frac{2x-1}{x+2}\)
    \(\frac{5x+3}{5x+1}\)  
    \(1\)

    Провери одговоре Не знам

  • 8.      

    Тангента криве \(y=e^{-x} (x>-1)\), сече координатне осе у тачкама \(A\) и \(B\). Ако је \(O\) координатни почетак, максимална површина троугла \(AOB\) износи:

    \(\frac{1}{e}\)
    \(e\)
    \(2e\)
    \(\frac{3}{e}\)
    \(\frac{2}{e}\)

    Провери одговоре Не знам

  • 9.      

    Ако је \(k \in R\), \(i^{2}=-1\), тада је могудо комплексног броја \(\left(\frac{1+i}{1-i}\right)^{2015}+\frac{-1+5ki}{3i}-1\) најмањи за \(k\) једнако:

    \(-\frac{1}{2}\)
    \(0\)
    \(\frac{1}{3}\)
    \(\frac{3}{5}\)
    \(3\)

    Провери одговоре Не знам

  • 10.      

    Ако су \(A\) и \(B\) тачке на кругу \(x^2  + y^2  + 4x + 4y + 5  =  0\) најдаље и најближе тачки \(C(1, 2)\) онда је \(AC + BC\) једнако: 
     

     

    \(5\sqrt{3}+5\)  
    \(5-\sqrt{3}\)
    \(5\)  
    \(5\sqrt{3}\)
    \(10\)  

    Провери одговоре Не знам

  • 11.      

    Нека је \(\DeclareMathOperator\tg{tg} \DeclareMathOperator\ctg{ctg} f_1(x)=1, f_2(x)= \tg{\frac{x}{2}}\ctg{\frac{x}{2}}\) и \(\DeclareMathOperator\tg{tg} \DeclareMathOperator\ctg{ctg} f_3(x)= \frac{|\sin x|}{\sqrt{1-\cos^2x}}\). Тачно је тврђење:

    \(f_1=f_3 \neq f_2\)
    међу датим функцијама нема једнаких
    \(f_1=f_2 \neq f_3\)
    све функције су једнаке међу собом
    \(f_1 \neq f_2 = f_3\)

    Провери одговоре Не знам

  • 12.      

    Скуп свих решења неједначине \(\frac{\left | 1-x \right |}{1-\left | x \right |}<\frac{1+\left | x \right |}{\left | 1+x \right |}\) је облика (за неке реалне бројеве \(a\) и \(b\) такве да је \(0 < a < b < + \infty ):\)

    \((-\infty, -a) \cup (a, +\infty ) \)
    \((-b, -a) \cup (a, b) \)
    \((-\infty, -a) \)
    \((a, +\infty ) \)
    \((-\infty, -a) \cup (-a, a ) \cup (a, +\infty ) \)

    Провери одговоре Не знам

  • 13.      

    Ако је \(k \in Z\) и \(0,0010101 \cdot 10^{k}>1001\), која је намања могућа вредност за \(k\)?

    \(6\)
    \(0\)
    \(-6\)
    \(5\)
    \(-5\)

    Провери одговоре Не знам

  • 14.      

    Коефицијент уз \(x^{24}\) у развијеном облику степена бинома \((x^2 − 2x)^{13}\) је:

    \(312\)
    \(78\)
    \(-78\)  
    \(156\)  
    \(-312\)            

    Провери одговоре Не знам

  • 15.      

    Највећа могућа запремина праве купе чија изводница има дужину \(s\) је: 

    \(\frac{\pi s^3\sqrt{3}}{9}\)  
     \(\frac{2\pi s^3\sqrt{2}}{27}\)
    \(\frac{2\pi s^3\sqrt{3}}{27}\)
    \(\frac{4\pi s^3\sqrt{3}}{27}\)  
    \(\frac{\pi s^3\sqrt{3}}{27}\)  

    Провери одговоре Не знам

  • 16.      

    Реалан део комплексног броја \( \frac{1}{2-\sqrt{5}+i\sqrt{3}}\) је:

    \(-2-\sqrt{5}\)
    \(\frac{(\sqrt{5}-3)\sqrt{3}}{16}\)
    \(\frac{1}{3-\sqrt{5}}\)
    \(\frac{1-\sqrt{5}}{4}\)
    \(\frac{1-\sqrt{5}}{16}\)

    Провери одговоре Не знам

  • 17.      

    Једначина круга чији је центар тачка пресека правих \(x-2y+4=0\) и \(3x+y-9=0\), а који додирује праву \(3x+4y+2 \) гласи:

    \(x^{2}-4x+y^{2}-6y-2=0 \)
    \(x^{2}-4x+y^{2}-6y+1=0 \)
    \(x^{2}-4x+y^{2}-6y-3=0 \)
    \(x^{2}-4x+y^{2}-6y=0 \)
    \(x^{2}-4x+y^{2}-6y-1=0 \)

    Провери одговоре Не знам

  • 18.      

    Коефициент уз \(x^{27}y^{2}\) у развоју бинома \(\left ( x^{3}+\sqrt{y} \right )^{13}\) једнак је:

    \(12 \)
    \(715 \)
    \(78 \)
    \(1516 \)
    \(1312 \)

    Провери одговоре Не знам

  • 19.      

    Aко је \(f(x)=x^3-3x\) и \(g(x)=\sin \frac{\pi }{12}x\) тада је \(f(g(2))\) једнако:

    \(-\frac{11}{2} \)
    \(\frac{11}{8}\)
    \(-\frac{11}{8} \)
    \(\frac{11}{2} \)
    \(0 \)

    Провери одговоре Не знам

  • 20.      

    Ако су \(\alpha\) и \(\beta\) решења једначине \(x^2-2x+5=0\), онда је \(\frac{​\alpha^2+\alpha \beta+ \beta^2}{\alpha^3+\beta^3}\) једнако:

    \(-\frac{1}{22}\)
    \(\frac{1}{22}\)
    \(\frac{1}{11}\)
    \(-\frac{1}{2}\)
    \(\frac{1}{2}\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време