Задаци

  • 1.      

    Број реалиних решења једначине \(f(x)+f(f(x))=x\), где је \(f(x)=|x|+a\)\(a>0\) једнак је:

    \(1\)
    \(3\)
    \(2\)
    \(4\)
    \(0\)

    Провери одговоре Не знам

  • 2.      

    Ако график функције \(y=\frac{1}{x^2-ax+2}\) садржи тачку \(M\left( -3, \frac{1}{19} \right)\) онда је највећа вредност функције једнака:

    \(4\)
    \(\frac{9}{2}\)
    \(\frac{3}{22}\)
    \(\frac{3}{10}\)
    \(\frac{1}{2}\)

    Провери одговоре Не знам

  • 3.      

    Решење једначине \(2^{16^{x}}=16^{2^{x}}\) јесте:

    \(\frac{2}{3} \)
    \(\frac{1}{2} \)
    \(\frac{4}{5} \)
    \(\frac{5}{6} \)
    \(\frac{3}{4} \)

    Провери одговоре Не знам

  • 4.      

    Коефициент уз \(x^{27}y^{2}\) у развоју бинома \(\left ( x^{3}+\sqrt{y} \right )^{13}\) једнак је:

    \(78 \)
    \(1516 \)
    \(715 \)
    \(1312 \)
    \(12 \)

    Провери одговоре Не знам

  • 5.      

    Број \({\left( 1+i \sqrt{3}\right)}^n\), где је \(i^2=-1\), је реалан ако и само ако за неки цео број \(k\) важи:

    \(n=2k\)
    \(n=3k\)
    \(n=3k+1\)
    \(n=6k\)
    \(n=3k+2\)

    Провери одговоре Не знам

  • 6.      

    Унутрашљи углови конвексног петоугла односе се као 3 : 4 : 5 : 7 : 8. Разлика највећег и најмањег од тих углова је:

    40°
    80°
    100°
    120°
    60°

    Провери одговоре Не знам

  • 7.      

    Знајући да је \(\cos\left({x-\frac{3\pi}{2}}\right)=-\frac{4}{5}\) и \(\frac{\pi}{2}<x<\pi\), тада је вредност израза \(\sin\frac{x}{2}\cos{\frac{5x}{2}}\) једнака:

    \(1\)
    \(\frac{82}{125}\)
    \(\frac{4}{125}\)
    \(-\frac{38}{125}\)
    \(-1\)

    Провери одговоре Не знам

  • 8.      

    Укупан број реалних решења једначине \(\sqrt{3\cdot 2^{\log_{10}2x}+1}+\sqrt{2\cdot 2^{\log_{10}2x}+9}=\sqrt{13\cdot 2^{\log_{10}2x}-4}\) је:

    \(2 \)
    Ниједан од понуђених одговора
    \(0 \)
    \(1 \)
    \(3 \)

    Провери одговоре Не знам

  • 9.      

    Ако је:

     

    \(\begin{eqnarray} x-2y+z&=&7\\ 2x+3y-z&=&-2\\ -x+2y+2z&=&2 \end{eqnarray}\)

     

    онда је \(x^2+y^2+z^2\) једнако:

    12
    14
    16
    10
    8

    Провери одговоре Не знам

  • 10.      

    Ако је \(A=\frac{1}{6}\left((log_{2}{3})^3- (\log_{2}{6})^3-(\log_{2}{12})^3+(log_{2}{24})^3 \right)\), тада је вредност израза \(2^A\) једнака:

    \(1\)
    \(144\)
    \(64\)
    \(36\)
    \(72\)

    Провери одговоре Не знам

  • 11.      

    Aко је \(f(x)=x^3-3x\) и \(g(x)=\sin \frac{\pi }{12}x\) тада је \(f(g(2))\) једнако:

    \(-\frac{11}{2} \)
    \(0 \)
    \(\frac{11}{2} \)
    \(\frac{11}{8}\)
    \(-\frac{11}{8} \)

    Провери одговоре Не знам

  • 12.      

    Једначина круга чији је центар тачка пресека правих \(x-2y+4=0\) и \(3x+y-9=0\), а који додирује праву \(3x+4y+2 \) гласи:

    \(x^{2}-4x+y^{2}-6y+1=0 \)
    \(x^{2}-4x+y^{2}-6y-2=0 \)
    \(x^{2}-4x+y^{2}-6y-3=0 \)
    \(x^{2}-4x+y^{2}-6y=0 \)
    \(x^{2}-4x+y^{2}-6y-1=0 \)

    Провери одговоре Не знам

  • 13.      

    Ако за дијагонале ромба важи једнакост \(d_1=(2-\sqrt{3})d_2\), тада је оштар угао ромба једнак:

    \(45^{\circ}\)
    \(22,5^{\circ}\)
    \(60^{\circ}\)
    \(15^{\circ}\)
    \(30^{\circ}\)

    Провери одговоре Не знам

  • 14.      

    Једно од реалних решења једначине \(\log_{\cos{x}}\sin{x}=4\log_{\sin{x}}\cos{x}\) припада интервалу:

    \(\left(0, \frac{\pi}{6} \right]\)
    \(\left(\frac{\pi}{6}, \frac{\pi}{4} \right]\)
    \(\left(\frac{\pi}{3}, \frac{\pi}{2} \right)\)
    \(\left[\frac{5\pi}{6}, \pi \right)\)
    \(\left(\frac{\pi}{4}, \frac{\pi}{3} \right]\)

    Провери одговоре Не знам

  • 15.      

    Вредност израза \(\left ( \frac{\left ( -0,4 \right )^{3}}{\left ( -0,8 \right )^{3}}- \frac{\left ( -0,8 \right )^{3}}{\left ( -0,4 \right )^{3}} \right ):\left ( \frac{3}{4}-3 \right )\) једнака је:

    \(\frac{4}{9} \) 
    \(\frac{7}{2} \) 
    \(\frac{7}{9} \) 
    \(\frac{63}{8} \)
    \(\frac{9}{2} \) 

    Провери одговоре Не знам

  • 16.      

    Ако су \(A\) и \(B\) тачке на кругу \(x^2  + y^2  + 4x + 4y + 5  =  0\) најдаље и најближе тачки \(C(1, 2)\) онда је \(AC + BC\) једнако: 
     

     

    \(5-\sqrt{3}\)
    \(5\)  
    \(10\)  
    \(5\sqrt{3}\)
    \(5\sqrt{3}+5\)  

    Провери одговоре Не знам

  • 17.      

    Ако је \(f \left( \frac{x+3}{x+1} \right)=3x+2\) за \(x \in R \backslash \{ -1 \}\), онда је \(f(5)\) једнако:

    17
    \(-\frac{1}{2}\)
    \(\frac{1}{2}\)
    \(\frac{5}{2}\)
    5

    Провери одговоре Не знам

  • 18.      

    Ако је \(k \in R\), \(i^{2}=-1\), тада је могудо комплексног броја \(\left(\frac{1+i}{1-i}\right)^{2015}+\frac{-1+5ki}{3i}-1\) најмањи за \(k\) једнако:

    \(\frac{3}{5}\)
    \(3\)
    \(-\frac{1}{2}\)
    \(\frac{1}{3}\)
    \(0\)

    Провери одговоре Не знам

  • 19.      

    Највећа могућа запремина праве купе чија изводница има дужину \(s\) је: 

    \(\frac{\pi s^3\sqrt{3}}{27}\)  
    \(\frac{2\pi s^3\sqrt{3}}{27}\)
    \(\frac{4\pi s^3\sqrt{3}}{27}\)  
    \(\frac{\pi s^3\sqrt{3}}{9}\)  
     \(\frac{2\pi s^3\sqrt{2}}{27}\)

    Провери одговоре Не знам

  • 20.      

    Ако је \(a=\log_{2}3\) и \(b=\log_{5}2 \), тада је \(\log_{24}50\) једнако:

    \(\frac{b-2}{(b+1)(a+3)} \)
    \(\frac{2+b}{b(a+3)} \)
    \(\frac{-2+b}{b(a-4)} \)
    \(\frac{1+b}{b(a+3)} \)
    \(\frac{1+b}{b(a+4)} \)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време