Задаци

  • 1.      

    Који од датих интервала садржи сва решења једначине \(\frac{x-1}{\sqrt{x}+1}= 4+\frac{\sqrt{x}-1}{2}\)?

    \((10, 24]\)
    \((24, 92]\)
    \((−1, 1)\)
    \([6, 10]\)
    \([1, 6)\)  

    Провери одговоре Не знам

  • 2.      

    Средиште горње основе коцке и средишта ивица њене доње основе су темена пирамиде. Ако је ивица коцке \(2cm\), површина омотача пирамиде је:

    \(4\sqrt{3}{cm}^2\)
    \(4\sqrt{2}{cm}^2\)
    \(9{cm}^2\)
    \(3\sqrt{2}{cm}^2\)
    \(6{cm}^2\)

    Провери одговоре Не знам

  • 3.      

    У једнакокраком \(ABC\) троуглу је \(AB=BC=b\), \(AC=a\) и \(\sphericalangle ABC=20^{\circ}\). тада је израз \(\frac{a^2}{b^2}+\frac{b}{a}\) једнак:

    \(\frac{5}{2}\)
    \(3\)
    \(1\)
    \(\frac{3}{2}\)
    \(2\)

    Провери одговоре Не знам

  • 4.      

    Ако је:

     

    \(\begin{eqnarray} x-2y+z&=&7\\ 2x+3y-z&=&-2\\ -x+2y+2z&=&2 \end{eqnarray}\)

     

    онда је \(x^2+y^2+z^2\) једнако:

    14
    12
    16
    10
    8

    Провери одговоре Не знам

  • 5.      

    Вредност израза \(8\sin ^2 80^o-2\sqrt{3}\sin 40^o-2\cos 40^o\) једнака је:

    \(2\sqrt{3}\)
    \(4 \)
    \(4\sqrt{3} \)
    \(1 \)
    \(2\)

    Провери одговоре Не знам

  • 6.      

    Ако су \(\alpha\) и \(\beta\) решења једначине \(x^2-2x+5=0\), онда је \(\frac{​\alpha^2+\alpha \beta+ \beta^2}{\alpha^3+\beta^3}\) једнако:

    \(\frac{1}{11}\)
    \(-\frac{1}{22}\)
    \(-\frac{1}{2}\)
    \(\frac{1}{22}\)
    \(\frac{1}{2}\)

    Провери одговоре Не знам

  • 7.      

    Ако је \(i^{2}=-1\) и \(\varepsilon\) комплексан број који задовољава услов \(\varepsilon ^{2} + \varepsilon +1=0 ,\) тада је решење једначине \(\frac{x-1}{x+1}=\varepsilon \frac{1+i}{1-i}\) по \(x\) једнако:

    \(−2\varepsilon −1−2i \)
    \(2\varepsilon −1−2i \)
    \(2\varepsilon +1−2i \)
    \(−2\varepsilon −1+2i \)
    \(−2\varepsilon +1−2i \)

    Провери одговоре Не знам

  • 8.      

    Број реалиних решења једначине \(f(x)+f(f(x))=x\), где је \(f(x)=|x|+a\)\(a>0\) једнак је:

    \(3\)
    \(0\)
    \(2\)
    \(4\)
    \(1\)

    Провери одговоре Не знам

  • 9.      

    Број решења једначине \(\sin^2x+cosx+1=0\) на интервалу \((0, 4\pi)\) је:

    1
    4
    3
    2
    0

    Провери одговоре Не знам

  • 10.      

    Дата је аритметичка прогресија \(a_{1},a_{2},a_{3},\dots\) чија је разлика \(d=1\), а збир првих \(98\) чланова \(a_{1}+a_{2}+ \cdots+a_{98}=137\). Тада је збир \(a_{2}+a_{4}+a_{6}+ \cdots+a_{98}\) једнак:

    \(93\)
    \(141\)
    \(103\)
    \(127\)
    \(88\)

    Провери одговоре Не знам

  • 11.      

    Коефициент уз \(x^{27}y^{2}\) у развоју бинома \(\left ( x^{3}+\sqrt{y} \right )^{13}\) једнак је:

    \(12 \)
    \(1516 \)
    \(1312 \)
    \(715 \)
    \(78 \)

    Провери одговоре Не знам

  • 12.      

    Највећа могућа запремина праве купе чија изводница има дужину \(s\) је: 

    \(\frac{\pi s^3\sqrt{3}}{27}\)  
    \(\frac{2\pi s^3\sqrt{3}}{27}\)
    \(\frac{4\pi s^3\sqrt{3}}{27}\)  
     \(\frac{2\pi s^3\sqrt{2}}{27}\)
    \(\frac{\pi s^3\sqrt{3}}{9}\)  

    Провери одговоре Не знам

  • 13.      

    Скуп свих реалних вредности за које важи неједнакост \(|4^{3x}-2^{4x+2}\cdot3^{x+1}+20\cdot12^x\cdot3^x|\geq8\cdot6^x(8^{x-1}+6^x)\) је облика (за неке реалне бројеве \(a, b, c\) и \(d\) такве да је \(-\infty<a<b<c<d<\infty\)):

    \((-\infty,a]\cup(b,c)\)
    \((-\infty,a]\cup[b,c]\cup[d,+\infty)\)
    \((a,b)\cup\{c\}\)
    \((-\infty,a)\cup[b,c)\)
    \((-\infty,a)\cup(d,+\infty)\)

    Провери одговоре Не знам

  • 14.      

    У оштроуглом троуглу странице су \(a = 1\) и \(b=2\), а површина \(P=\frac{12}{13}\). Дужина треће странице \(c\) тог троугла једнака је:

    \(\frac{2\sqrt{5}}{\sqrt{13}}\)
    \(\frac{3\sqrt{5}}{\sqrt{13}}\)
    \(\frac{4\sqrt{5}}{\sqrt{13}}\)
    \(\frac{5\sqrt{5}}{\sqrt{13}}\)
    \(\frac{\sqrt{85}}{\sqrt{13}}\)

    Провери одговоре Не знам

  • 15.      

    Ако се зна да \(\frac{14}{9}\) биномног коефицијента трећег члана, биномни коефицијент четвртог члана и биномни коефицијент петог члана у развоју бинома \(\left( \sqrt[3]{x}+\frac{1}{\sqrt{x}} \right)^n\)\((n \in N, x>0)\), чине геометријску прогресију, тада је биномни коефицијент уз \(\sqrt{x}\) једнак:

    \(48\)
    \(21\)
    \(84\)
    \(5\)
    \(1\)

    Провери одговоре Не знам

  • 16.      

    Ако су \(x_{1}\) и \(x_{2}\) решења квадратне једначине \(x^2+x+1=0\), тада су \(y_{1}=ax_{1}+x_{2}\) и \(y_{2}=x_{1}+ax_{2}\), \((a \in R)\), решења квадратне једначине:

    \(y^{2}+(a+1)y-a^2+a+1=0\)
    \(y^{2}+(a+1)y+a^2-a+1=0\)
    \(y^{2}+(a^2+1)y+1=0\)
    \(y^{2}+(a^2+1)y+a^2-a+1=0\)
    ниједан од понуђених одговора

    Провери одговоре Не знам

  • 17.      

    Укупан број реалних решења једначине \(3 tg^{2}x-8\cos^{2} x+1=0\) која пропадају интервалу \((0,2\pi )\) је:

    \(2 \)
    \(6 \)
    \(5 \)
    \(3 \)
    \(4 \)

    Провери одговоре Не знам

  • 18.      

    Број парова \((p,q), p,q \in R\) таквих да је полином \(x^4+px^2+q\) дељив полиномом \(x^2+px+q\), једнак је:

    \(1\)
    \(2\)
    \(5\)
    \(0\)
    \(4\)

    Провери одговоре Не знам

  • 19.      

    Четири младића и четири девојке иду у биоскоп. Имају карте за места у истом реду који има тачно 8 седишта. На колико начина се могу распоредити ако је познато да две од девојака не желе да седа ни на првом ни на последњем месту. 
     

     

    \(\frac{(8!)^2}{2}\)
    \(\frac{8!}{4!}\)
    \(15\cdot 6!\)
    \(2\cdot 6!\)  
    \(30\cdot 6!\)

    Провери одговоре Не знам

  • 20.      

    Растојање координатног почетка \(O\) правоуглог координатног система \(xOy\) од праве задате једначином \(y=3x+5\) је:

    \(\frac{3}{2}\)
    \(\frac{\sqrt{5}}{2}\)
    \(\frac{\sqrt{10}}{2}\)
    \(\frac{\sqrt{10}}{3}\)
    \(\frac{\sqrt{5}}{3}\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време