Задаци

  • 1.      

    Ако је \(i^{2}=-1\) и \(\varepsilon\) комплексан број који задовољава услов \(\varepsilon ^{2} + \varepsilon +1=0 ,\) тада је решење једначине \(\frac{x-1}{x+1}=\varepsilon \frac{1+i}{1-i}\) по \(x\) једнако:

    \(2\varepsilon +1−2i \)
    \(−2\varepsilon +1−2i \)
    \(−2\varepsilon −1−2i \)
    \(−2\varepsilon −1+2i \)
    \(2\varepsilon −1−2i \)

    Провери одговоре Не знам

  • 2.      

    Средиште горње основе коцке и средишта ивица њене доње основе су темена пирамиде. Ако је ивица коцке \(2cm\), површина омотача пирамиде је:

    \(3\sqrt{2}{cm}^2\)
    \(4\sqrt{3}{cm}^2\)
    \(9{cm}^2\)
    \(6{cm}^2\)
    \(4\sqrt{2}{cm}^2\)

    Провери одговоре Не знам

  • 3.      

    Број парова \((p,q), p,q \in R\) таквих да је полином \(x^4+px^2+q\) дељив полиномом \(x^2+px+q\), једнак је:

    \(0\)
    \(2\)
    \(4\)
    \(5\)
    \(1\)

    Провери одговоре Не знам

  • 4.      

    У правој купи угао између изводнице и висине је \(60^{\circ}\) а изводница је за \(2cm\) дужа од висине. Колика је запремина те купе?

     

    \(\pi cm^3\)
    \(\frac{\pi}{3} cm^3\)
    \(\pi^2 cm^3\)    
     \(\frac{\pi}{2} cm^3\)  
    \(8\pi cm^3\)

    Провери одговоре Не знам

  • 5.      

    Вредност израза \(\left( 1-sin\frac{\pi}{8} \right)\left( 1+sin\frac{\pi}{8} \right)\) је:

    \(\frac{2-\sqrt{2}}{4}\)
    \(\frac{2+\sqrt{2}}{4}\)
    \(\frac{\sqrt{2}}{8}\)
    \(\frac{\sqrt{2}}{4}\)
    \(\frac{1}{4}\)

    Провери одговоре Не знам

  • 6.      

    Решење једначине \(2^{16^{x}}=16^{2^{x}}\) јесте:

    \(\frac{5}{6} \)
    \(\frac{3}{4} \)
    \(\frac{4}{5} \)
    \(\frac{1}{2} \)
    \(\frac{2}{3} \)

    Провери одговоре Не знам

  • 7.      

    Ако се зна да је полином \(x^{3}+ax^{2}+bx-4, (a,b\in \mathbb{R})\) дељив полиномом \(x^{2}-1 \), тада збир \(a^{2}+ b ^{2}\) износи:

    \(17 \)
    \(5 \)
    \(14 \)
    \(1 \)
    \(3 \)

    Провери одговоре Не знам

  • 8.      

    Опадајућа аритметичка прогресија \((a_n)\) је таква да важи \(a_1^2  + a_2^2  + a_3^2  = 56\)  и \(\frac{a_{10}}{a_2}=5\). Тада је \(a_{2014}\) једнако

    \(−4030\)
    \(−4028\)
    \(4030\)
    \(4028\)      
    таква прогресија не постоји 

    Провери одговоре Не знам

  • 9.      

    Прав ваљак и права купа имају заједничку основу. Врх купе је центар друге основе ваљка. Ако је однос висине ваљка и изводнице купе \(4:5\), тада је однос површина ваљка и купе једнак:

    \(8:5\)
    \(7:5\)
    \(7:4\)
    \(4:3\)
    \(3:2\)

    Провери одговоре Не знам

  • 10.      

    Тангента криве \(y=e^{-x} (x>-1)\), сече координатне осе у тачкама \(A\) и \(B\). Ако је \(O\) координатни почетак, максимална површина троугла \(AOB\) износи:

    \(2e\)
    \(e\)
    \(\frac{3}{e}\)
    \(\frac{1}{e}\)
    \(\frac{2}{e}\)

    Провери одговоре Не знам

  • 11.      

    Коефицијент уз \(x^{24}\) у развијеном облику степена бинома \((x^2 − 2x)^{13}\) је:

    \(312\)
    \(-78\)  
    \(78\)
    \(156\)  
    \(-312\)            

    Провери одговоре Не знам

  • 12.      

    Укупан број дијагонала правилног десетоугла је:

    \(  15 \)
    \(  25 \)
    \(  20 \)
    \(  30 \)
    \(  35 \)

    Провери одговоре Не знам

  • 13.      

    Ако је \(f(x − 1)=\frac{2x-1}{x+2}\) онда је \(f(f(x))\)  једнако:

     

    \(\frac{5x+3}{5x+1}\)  
    \(\frac{2x-1}{x+2}\)
     \(\frac{2x+1}{x+3}\)
    \(\frac{x+1}{x+2}\)  
    \(1\)

    Провери одговоре Не знам

  • 14.      

    Број \((1 + i\sqrt{3})^n\) је реалан ако и само ако ( \(k\) је цео број):

    \(n = 3k + 1\)
    \(n = 3k\)
    \(n = 2k\)  
    \(n = 6k\)
    \(n = 3k + 2\)

    Провери одговоре Не знам

  • 15.      

    Сва реална решења једначине \(\frac{x+\sqrt{3}}{\sqrt{3}+\sqrt{x+\sqrt{3}}}+\frac{x-\sqrt{3}}{\sqrt{3}-\sqrt{x-\sqrt{3}}}=\sqrt{x}\) налазе се у скупу:

    \([\sqrt{3},2\sqrt{3})\)
    \(\emptyset\)
    \((2\sqrt{3},3\sqrt{3})\)
    \([6,8)\)
    \([3\sqrt{3},6)\)

    Провери одговоре Не знам

  • 16.      

    Знајући да је \(\cos\left({x-\frac{3\pi}{2}}\right)=-\frac{4}{5}\) и \(\frac{\pi}{2}<x<\pi\), тада је вредност израза \(\sin\frac{x}{2}\cos{\frac{5x}{2}}\) једнака:

    \(-\frac{38}{125}\)
    \(1\)
    \(\frac{82}{125}\)
    \(\frac{4}{125}\)
    \(-1\)

    Провери одговоре Не знам

  • 17.      

    Скуп свих реалних вредности за које важи неједнакост \(|4^{3x}-2^{4x+2}\cdot3^{x+1}+20\cdot12^x\cdot3^x|\geq8\cdot6^x(8^{x-1}+6^x)\) је облика (за неке реалне бројеве \(a, b, c\) и \(d\) такве да је \(-\infty<a<b<c<d<\infty\)):

    \((-\infty,a)\cup(d,+\infty)\)
    \((-\infty,a]\cup[b,c]\cup[d,+\infty)\)
    \((-\infty,a)\cup[b,c)\)
    \((-\infty,a]\cup(b,c)\)
    \((a,b)\cup\{c\}\)

    Провери одговоре Не знам

  • 18.      

    Најмања вредност функције \(f(x)=4x+\frac{9\pi ^{2}}{x}+\sin x, x>0\) је:
     

    \(\frac{\pi^2-1}{2} \)
    \(5\pi +2 \)
    \(\frac{5\pi}{2}\)
    \(12\pi -1 \)
    \(3\pi +1 \)

    Провери одговоре Не знам

  • 19.      

    Ако су \(A\) и \(B\) тачке на кругу \(x^2  + y^2  + 4x + 4y + 5  =  0\) најдаље и најближе тачки \(C(1, 2)\) онда је \(AC + BC\) једнако: 
     

     

    \(5\sqrt{3}+5\)  
    \(5\sqrt{3}\)
    \(10\)  
    \(5\)  
    \(5-\sqrt{3}\)

    Провери одговоре Не знам

  • 20.      

    Ако је \(a=\log_{2}3\) и \(b=\log_{5}2 \), тада је \(\log_{24}50\) једнако:

    \(\frac{2+b}{b(a+3)} \)
    \(\frac{1+b}{b(a+3)} \)
    \(\frac{-2+b}{b(a-4)} \)
    \(\frac{1+b}{b(a+4)} \)
    \(\frac{b-2}{(b+1)(a+3)} \)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време