Задаци

  • 1.      

    За коју вредност реалног параметра \(m\) израз \(x_1^3  + x_2^3\), где су \(x_1\) и  \(x_2\) решења квадратне једначине \(x^2 − x + m^2 + 2m − 3 = 0\), узима максималну вредност?
     

    \(0\)  
    \(−1\) 
    \(2\) 
    \(2\)
    \(1\)

    Провери одговоре Не знам

  • 2.      

    Последња цифра броја \(7^{2009}\) је:

    1
    7
    5
    3
    9

    Провери одговоре Не знам

  • 3.      

    Скуп свих реалних вредности за које важи неједнакост \(|4^{3x}-2^{4x+2}\cdot3^{x+1}+20\cdot12^x\cdot3^x|\geq8\cdot6^x(8^{x-1}+6^x)\) је облика (за неке реалне бројеве \(a, b, c\) и \(d\) такве да је \(-\infty<a<b<c<d<\infty\)):

    \((-\infty,a)\cup(d,+\infty)\)
    \((-\infty,a]\cup[b,c]\cup[d,+\infty)\)
    \((a,b)\cup\{c\}\)
    \((-\infty,a]\cup(b,c)\)
    \((-\infty,a)\cup[b,c)\)

    Провери одговоре Не знам

  • 4.      

    Средиште горње основе коцке и средишта ивица њене доње основе су темена пирамиде. Ако је ивица коцке \(2cm\), површина омотача пирамиде је:

    \(3\sqrt{2}{cm}^2\)
    \(6{cm}^2\)
    \(9{cm}^2\)
    \(4\sqrt{3}{cm}^2\)
    \(4\sqrt{2}{cm}^2\)

    Провери одговоре Не знам

  • 5.      

    Тангента криве \(y=e^{-x} (x>-1)\), сече координатне осе у тачкама \(A\) и \(B\). Ако је \(O\) координатни почетак, максимална површина троугла \(AOB\) износи:

    \(\frac{1}{e}\)
    \(e\)
    \(\frac{2}{e}\)
    \(2e\)
    \(\frac{3}{e}\)

    Провери одговоре Не знам

  • 6.      

    Збир свих целих бројева који задовољавају једначину \(\frac{x}{x+2} \leq \frac{1}{1-x}\)  је:

     \(1\)  
    \(−1\)
    \(−2\)    
    \(0\)
    бесконачан

    Провери одговоре Не знам

  • 7.      

    Ако су \(\alpha\) и \(\beta\) решења једначине \(x^2-2x+5=0\), онда је \(\frac{​\alpha^2+\alpha \beta+ \beta^2}{\alpha^3+\beta^3}\) једнако:

    \(\frac{1}{22}\)
    \(\frac{1}{11}\)
    \(-\frac{1}{22}\)
    \(\frac{1}{2}\)
    \(-\frac{1}{2}\)

    Провери одговоре Не знам

  • 8.      

    Број \({\left( 1+i \sqrt{3}\right)}^n\), где је \(i^2=-1\), је реалан ако и само ако за неки цео број \(k\) важи:

    \(n=3k+2\)
    \(n=2k\)
    \(n=6k\)
    \(n=3k+1\)
    \(n=3k\)

    Провери одговоре Не знам

  • 9.      

    Реалан део комплексног броја \( \frac{1}{2-\sqrt{5}+i\sqrt{3}}\) је:

    \(\frac{1}{3-\sqrt{5}}\)
    \(\frac{1-\sqrt{5}}{16}\)
    \(-2-\sqrt{5}\)
    \(\frac{1-\sqrt{5}}{4}\)
    \(\frac{(\sqrt{5}-3)\sqrt{3}}{16}\)

    Провери одговоре Не знам

  • 10.      

    Максимална запремина ваљка уписаног у лопту полупречника \(R\) је:

    \(\frac{4}{3\sqrt{3}}R^3\pi\)
    \(\frac{2}{3\sqrt{3}}R^3\pi\)
    \(\frac{2}{3}R^3\pi\)
    \(\frac{1}{\sqrt{2}}R^3\pi\)
    \(\frac{16}{27}R^3\pi\)

    Провери одговоре Не знам

  • 11.      

    У правој купи угао између изводнице и висине је \(60^{\circ}\) а изводница је за \(2cm\) дужа од висине. Колика је запремина те купе?

     

     \(\frac{\pi}{2} cm^3\)  
    \(\pi^2 cm^3\)    
    \(\frac{\pi}{3} cm^3\)
    \(\pi cm^3\)
    \(8\pi cm^3\)

    Провери одговоре Не знам

  • 12.      

    Скуп решења неједначине \(\log_2(\log_4 x) + \log_4(\log_2 x) < 2\) је:

    \((0, 8)\)  
    \((\frac{1}{2}, 16)\)
    \((1, 16)\)
    \((\frac{1}{16}, 16)\)
    \((0, 16)\)

    Провери одговоре Не знам

  • 13.      

    Правилна четворострана призма пресечена је са равни која садржи основну ивицу призме. Ако је површина пресека равни призме два пута већи од површине базе, тада је угао између те равни и базе призме једнак:

    \(30^o \)
    \(60^o \)
    \(75^o \)
    \(45^o \)
    \(15^o \)

    Провери одговоре Не знам

  • 14.      

    Укупан број парова \((x,y)\) целих бројева таквих да важи \(|x^2-2x|-y<\frac{1}{2}\) и \(y+|x-1|<2\) је:

    \(2\)
    \(1\)
    \(3\)
    \(4\)
    \(0\)

    Провери одговоре Не знам

  • 15.      

    Број \((1 + i\sqrt{3})^n\) је реалан ако и само ако ( \(k\) је цео број):

    \(n = 3k + 2\)
    \(n = 6k\)
    \(n = 2k\)  
    \(n = 3k\)
    \(n = 3k + 1\)

    Провери одговоре Не знам

  • 16.      

    Странице троугла су \(21\) и \(9\sqrt{2} ,\) а њима захваћени угао \(45^o .\) Збир полупречника уписаног и описаног круга тог троугла је:

    \(6(\sqrt{3}-\sqrt{2}) \)
    \(6(\sqrt{2}+1) \)
    \(6(\sqrt{3}+2) \)
    \(3(-\sqrt{3}+2) \)
    \(6(\sqrt{2}-1) \)

    Провери одговоре Не знам

  • 17.      

    Ако је \(N\) број шестоцифрених бројева који у свом запису садрже цифру 1 бар на једном месту, тада \(N\) припада интервалу:

    \([2 \cdot 10^5, 3 \cdot 10^5)\)
    \([5 \cdot 10^5, 6 \cdot 10^5)\)
    \([3 \cdot 10^5, 4 \cdot 10^5)\)
    \([10^5, 2 \cdot 10^5)\)
    \([4 \cdot 10^5, 5 \cdot 10^5)\)

    Провери одговоре Не знам

  • 18.      

    Решење једначине \(2^{16^{x}}=16^{2^{x}}\) јесте:

    \(\frac{5}{6} \)
    \(\frac{3}{4} \)
    \(\frac{2}{3} \)
    \(\frac{4}{5} \)
    \(\frac{1}{2} \)

    Провери одговоре Не знам

  • 19.      

    Ако је \(f \left( \frac{x+3}{x+1} \right)=3x+2\) за \(x \in R \backslash \{ -1 \}\), онда је \(f(5)\) једнако:

    \(-\frac{1}{2}\)
    17
    5
    \(\frac{5}{2}\)
    \(\frac{1}{2}\)

    Провери одговоре Не знам

  • 20.      

    Aко је \(f(x)=x^3-3x\) и \(g(x)=\sin \frac{\pi }{12}x\) тада је \(f(g(2))\) једнако:

    \(-\frac{11}{2} \)
    \(\frac{11}{2} \)
    \(0 \)
    \(\frac{11}{8}\)
    \(-\frac{11}{8} \)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време