Задаци

  • 1.      

    Унутрашљи углови конвексног петоугла односе се као 3 : 4 : 5 : 7 : 8. Разлика највећег и најмањег од тих углова је:

    120°
    60°
    80°
    100°
    40°

    Провери одговоре Не знам

  • 2.      

    Укупан број реалних решења једначине \(3 tg^{2}x-8\cos^{2} x+1=0\) која пропадају интервалу \((0,2\pi )\) је:

    \(4 \)
    \(2 \)
    \(6 \)
    \(3 \)
    \(5 \)

    Провери одговоре Не знам

  • 3.      

    У једнакокраком \(ABC\) троуглу је \(AB=BC=b\), \(AC=a\) и \(\sphericalangle ABC=20^{\circ}\). тада је израз \(\frac{a^2}{b^2}+\frac{b}{a}\) једнак:

    \(2\)
    \(\frac{3}{2}\)
    \(1\)
    \(\frac{5}{2}\)
    \(3\)

    Провери одговоре Не знам

  • 4.      

    Ако је \(a\in \mathbb{R}\) и \(\left | a+\frac{1}{a} \right |=3\) тада је \(\left | a-\frac{1}{a} \right |\) једнако:

    \(\sqrt{3} \)
    \(\sqrt{5} \)
    \(\sqrt{7} \)
    \(0 \)
    \(\sqrt{2} \)

    Провери одговоре Не знам

  • 5.      

    За коју вредност реалног параметра \(m\) израз \(x_1^3  + x_2^3\), где су \(x_1\) и  \(x_2\) решења квадратне једначине \(x^2 − x + m^2 + 2m − 3 = 0\), узима максималну вредност?
     

    \(−1\) 
    \(2\) 
    \(1\)
    \(2\)
    \(0\)  

    Провери одговоре Не знам

  • 6.      

    Ако су \(x_{1}\) и \(x_{2}\) решења квадратне једначине \(x^2+x+1=0\), тада су \(y_{1}=ax_{1}+x_{2}\) и \(y_{2}=x_{1}+ax_{2}\), \((a \in R)\), решења квадратне једначине:

    \(y^{2}+(a^2+1)y+a^2-a+1=0\)
    \(y^{2}+(a^2+1)y+1=0\)
    \(y^{2}+(a+1)y+a^2-a+1=0\)
    \(y^{2}+(a+1)y-a^2+a+1=0\)
    ниједан од понуђених одговора

    Провери одговоре Не знам

  • 7.      

    Дата је аритметичка прогресија \(a_{1},a_{2},a_{3},\dots\) чија је разлика \(d=1\), а збир првих \(98\) чланова \(a_{1}+a_{2}+ \cdots+a_{98}=137\). Тада је збир \(a_{2}+a_{4}+a_{6}+ \cdots+a_{98}\) једнак:

    \(103\)
    \(93\)
    \(127\)
    \(141\)
    \(88\)

    Провери одговоре Не знам

  • 8.      

    Ако је \(f(\frac{x+3}{x+1})=3x+2\)  за \(x \in R \setminus\{ -1\}\), онда је  \(f(5)\) једнако:

    \( \frac{5}{2} \)
    \( \frac{1}{2}\)
    \( 5 \)
    \( 17 \)
    \( -\frac{1}{2} \)

    Провери одговоре Не знам

  • 9.      

    Растојање координатног почетка \(O\) правоуглог координатног система \(xOy\) од праве задате једначином \(y=3x+5\) је:

    \(\frac{\sqrt{5}}{2}\)
    \(\frac{\sqrt{10}}{2}\)
    \(\frac{3}{2}\)
    \(\frac{\sqrt{5}}{3}\)
    \(\frac{\sqrt{10}}{3}\)

    Провери одговоре Не знам

  • 10.      

    Ако је \(k \in R\), \(i^{2}=-1\), тада је могудо комплексног броја \(\left(\frac{1+i}{1-i}\right)^{2015}+\frac{-1+5ki}{3i}-1\) најмањи за \(k\) једнако:

    \(\frac{3}{5}\)
    \(\frac{1}{3}\)
    \(0\)
    \(-\frac{1}{2}\)
    \(3\)

    Провери одговоре Не знам

  • 11.      

    Знајући да је \(\cos\left({x-\frac{3\pi}{2}}\right)=-\frac{4}{5}\) и \(\frac{\pi}{2}<x<\pi\), тада је вредност израза \(\sin\frac{x}{2}\cos{\frac{5x}{2}}\) једнака:

    \(1\)
    \(\frac{4}{125}\)
    \(-\frac{38}{125}\)
    \(-1\)
    \(\frac{82}{125}\)

    Провери одговоре Не знам

  • 12.      

    Број \((1 + i\sqrt{3})^n\) је реалан ако и само ако ( \(k\) је цео број):

    \(n = 6k\)
    \(n = 2k\)  
    \(n = 3k + 1\)
    \(n = 3k + 2\)
    \(n = 3k\)

    Провери одговоре Не знам

  • 13.      

    Око кружнице полупречника \(2cm\) описан је једнакокраки трапез површине \(20cm^2\). Дужина његовог крака је:

     

     такав трапез не постоји
    \(6cm\)
    \(10cm\)      
    \(5cm\)  
    \(20cm\)

    Провери одговоре Не знам

  • 14.      

    Једно од реалних решења једначине \(\log_{\cos{x}}\sin{x}=4\log_{\sin{x}}\cos{x}\) припада интервалу:

    \(\left(\frac{\pi}{6}, \frac{\pi}{4} \right]\)
    \(\left(\frac{\pi}{4}, \frac{\pi}{3} \right]\)
    \(\left(\frac{\pi}{3}, \frac{\pi}{2} \right)\)
    \(\left[\frac{5\pi}{6}, \pi \right)\)
    \(\left(0, \frac{\pi}{6} \right]\)

    Провери одговоре Не знам

  • 15.      

    Једна катета правоуглог троугла је \(8cm\), а хипотенуза је \(17cm\). Полупречник уписаног круга тог троугла је:

    2,5cm
    4cm
    3cm
    2cm
    3,5cm

    Провери одговоре Не знам

  • 16.      

    Нека је \(\DeclareMathOperator\tg{tg} \DeclareMathOperator\ctg{ctg} f_1(x)=1, f_2(x)= \tg{\frac{x}{2}}\ctg{\frac{x}{2}}\) и \(\DeclareMathOperator\tg{tg} \DeclareMathOperator\ctg{ctg} f_3(x)= \frac{|\sin x|}{\sqrt{1-\cos^2x}}\). Тачно је тврђење:

    \(f_1 \neq f_2 = f_3\)
    \(f_1=f_2 \neq f_3\)
    све функције су једнаке међу собом
    \(f_1=f_3 \neq f_2\)
    међу датим функцијама нема једнаких

    Провери одговоре Не знам

  • 17.      

    Ако су \(\alpha\) и \(\beta\) решења једначине \(x^2-2x+5=0\), онда је \(\frac{​\alpha^2+\alpha \beta+ \beta^2}{\alpha^3+\beta^3}\) једнако:

    \(-\frac{1}{2}\)
    \(\frac{1}{2}\)
    \(-\frac{1}{22}\)
    \(\frac{1}{22}\)
    \(\frac{1}{11}\)

    Провери одговоре Не знам

  • 18.      

    Збир свих целих бројева који задовољавају једначину \(\frac{x}{x+2} \leq \frac{1}{1-x}\)  је:

    \(−1\)
    бесконачан
     \(1\)  
    \(0\)
    \(−2\)    

    Провери одговоре Не знам

  • 19.      

    Највећа вредност функције \(f(x) = |2x + 1| + |x − 3| − |5x − 4|\) ,  \(x \in R\)  је:

    \(4,8\)
    \(2\)      
    \(2,6\) 
    \(−4\)
    \(−3\)    

    Провери одговоре Не знам

  • 20.      

    Укупан број дијагонала правилног десетоугла је:

    \(  25 \)
    \(  20 \)
    \(  15 \)
    \(  30 \)
    \(  35 \)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време