Задаци

  • 1.      

    Укупан број реалних решења једначине \(3 tg^{2}x-8\cos^{2} x+1=0\) која пропадају интервалу \((0,2\pi )\) је:

    \(2 \)
    \(6 \)
    \(5 \)
    \(3 \)
    \(4 \)

    Провери одговоре Не знам

  • 2.      

    Ако је \(f(\frac{x+3}{x+1})=3x+2\)  за \(x \in R \setminus\{ -1\}\), онда је  \(f(5)\) једнако:

    \( \frac{1}{2}\)
    \( \frac{5}{2} \)
    \( 17 \)
    \( -\frac{1}{2} \)
    \( 5 \)

    Провери одговоре Не знам

  • 3.      

    Најкраће растојање између правих \(\sqrt{2}x+y=1\) и \(2x+\sqrt{2}y=3\sqrt{2}\) једнако је:

    \(\frac{\sqrt{6}}{6}\)
    \(\sqrt{2}\)
    \(0\)
    \(\frac{2}{3}\sqrt{3}\)
    \(2\)

    Провери одговоре Не знам

  • 4.      

    Реалан део комплексног броја \( \frac{1}{2-\sqrt{5}+i\sqrt{3}}\) је:

    \(\frac{1-\sqrt{5}}{4}\)
    \(\frac{(\sqrt{5}-3)\sqrt{3}}{16}\)
    \(\frac{1-\sqrt{5}}{16}\)
    \(\frac{1}{3-\sqrt{5}}\)
    \(-2-\sqrt{5}\)

    Провери одговоре Не знам

  • 5.      

    Странице троугла су \(21\) и \(9\sqrt{2} ,\) а њима захваћени угао \(45^o .\) Збир полупречника уписаног и описаног круга тог троугла је:

    \(6(\sqrt{2}+1) \)
    \(6(\sqrt{3}+2) \)
    \(6(\sqrt{2}-1) \)
    \(6(\sqrt{3}-\sqrt{2}) \)
    \(3(-\sqrt{3}+2) \)

    Провери одговоре Не знам

  • 6.      

    Израз \(a \sqrt{a} \cdot \sqrt[4]{a^3}\), \(a \geq 0\), идентички је једнак изразу:

    \(a^6\)
    \(\sqrt[4]{a^{11}}\)
    \(\sqrt[4]{a^9}\)
    \(\sqrt[4]{a^7}\)
    \(a^2\)

    Провери одговоре Не знам

  • 7.      

    Кружница пролази кроз крајње тачке једне странице квадрата и кроз средиште наспрамне странице. Ако је страница квадрата дужине \(a\), онда је пречник кружнице једнак: 

    \(\frac{a+1}{a}\)
    \(\frac{5a}{4}\)
    \(\frac{3a}{\sqrt{2}}\)  
    \(\frac{\sqrt{5}a}{4}\)
     \(\frac{3a}{2}\)  

    Провери одговоре Не знам

  • 8.      

    Ако су \(x_{1}\) и \(x_{2}\) решења квадратне једначине \(x^2+x+1=0\), тада су \(y_{1}=ax_{1}+x_{2}\) и \(y_{2}=x_{1}+ax_{2}\), \((a \in R)\), решења квадратне једначине:

    \(y^{2}+(a^2+1)y+a^2-a+1=0\)
    ниједан од понуђених одговора
    \(y^{2}+(a+1)y-a^2+a+1=0\)
    \(y^{2}+(a^2+1)y+1=0\)
    \(y^{2}+(a+1)y+a^2-a+1=0\)

    Провери одговоре Не знам

  • 9.      

    Највећа вредност функције \(f(x) = |2x + 1| + |x − 3| − |5x − 4|\) ,  \(x \in R\)  је:

    \(2\)      
    \(2,6\) 
    \(−4\)
    \(4,8\)
    \(−3\)    

    Провери одговоре Не знам

  • 10.      

    Једначина \(\sqrt{1-x}=-x\) :

    има тачно два решења
    има тачно једно решење и оно је позитивно
    има тачно једно решење и оно је негативно
    нема решења                
    има више од два решење

    Провери одговоре Не знам

  • 11.      

    У оштроуглом троуглу странице су \(a = 1\) и \(b=2\), а површина \(P=\frac{12}{13}\). Дужина треће странице \(c\) тог троугла једнака је:

    \(\frac{4\sqrt{5}}{\sqrt{13}}\)
    \(\frac{3\sqrt{5}}{\sqrt{13}}\)
    \(\frac{2\sqrt{5}}{\sqrt{13}}\)
    \(\frac{\sqrt{85}}{\sqrt{13}}\)
    \(\frac{5\sqrt{5}}{\sqrt{13}}\)

    Провери одговоре Не знам

  • 12.      

    Последња цифра броја \(7^{2009}\) је:

    1
    7
    9
    3
    5

    Провери одговоре Не знам

  • 13.      

    Која од наведених релација постоји између решења \(x_1\) и \(x_2\) квадратне једначине \((1+m)x^{2}-(6+5m)x+5+6m=0, (m\in \mathbb{R}, m\neq 1) ?\)

    \(4 x_1x_2+x_1+x_2=2 \)
    \(-x_1x_2+x_1+x_2-4=0 \)
    \(x_1x_2+x_1+x_2-11=0 \)
    \(-x_1x_2+x_1+x_2+2=0 \)
    \(3x_1x_2+x_1+x_2-1=0 \)

    Провери одговоре Не знам

  • 14.      

    Сва реална решења једначине \(\frac{x+\sqrt{3}}{\sqrt{3}+\sqrt{x+\sqrt{3}}}+\frac{x-\sqrt{3}}{\sqrt{3}-\sqrt{x-\sqrt{3}}}=\sqrt{x}\) налазе се у скупу:

    \([6,8)\)
    \([3\sqrt{3},6)\)
    \(\emptyset\)
    \([\sqrt{3},2\sqrt{3})\)
    \((2\sqrt{3},3\sqrt{3})\)

    Провери одговоре Не знам

  • 15.      

    Једначина круга чији је центар тачка пресека правих \(x-2y+4=0\) и \(3x+y-9=0\), а који додирује праву \(3x+4y+2 \) гласи:

    \(x^{2}-4x+y^{2}-6y=0 \)
    \(x^{2}-4x+y^{2}-6y+1=0 \)
    \(x^{2}-4x+y^{2}-6y-2=0 \)
    \(x^{2}-4x+y^{2}-6y-1=0 \)
    \(x^{2}-4x+y^{2}-6y-3=0 \)

    Провери одговоре Не знам

  • 16.      

    Број парова \((p,q), p,q \in R\) таквих да је полином \(x^4+px^2+q\) дељив полиномом \(x^2+px+q\), једнак је:

    \(2\)
    \(0\)
    \(4\)
    \(1\)
    \(5\)

    Провери одговоре Не знам

  • 17.      

    На колико начина се у ред могу поређати 5 ученика и 2 ученице, тако да ученице не стоје једна до друге?

    \(250 \)
    \(2400 \)
    \(240\)
    \(3600 \)
    \(7680 \)

    Провери одговоре Не знам

  • 18.      

    Нека је \(\DeclareMathOperator\tg{tg} \DeclareMathOperator\ctg{ctg} f_1(x)=1, f_2(x)= \tg{\frac{x}{2}}\ctg{\frac{x}{2}}\) и \(\DeclareMathOperator\tg{tg} \DeclareMathOperator\ctg{ctg} f_3(x)= \frac{|\sin x|}{\sqrt{1-\cos^2x}}\). Тачно је тврђење:

    све функције су једнаке међу собом
    \(f_1 \neq f_2 = f_3\)
    међу датим функцијама нема једнаких
    \(f_1=f_3 \neq f_2\)
    \(f_1=f_2 \neq f_3\)

    Провери одговоре Не знам

  • 19.      

    Скуп решења неједначине \(\log_2(\log_4 x) + \log_4(\log_2 x) < 2\) је:

    \((\frac{1}{16}, 16)\)
    \((0, 8)\)  
    \((0, 16)\)
    \((\frac{1}{2}, 16)\)
    \((1, 16)\)

    Провери одговоре Не знам

  • 20.      

    Једно од реалних решења једначине \(\log_{\cos{x}}\sin{x}=4\log_{\sin{x}}\cos{x}\) припада интервалу:

    \(\left(\frac{\pi}{6}, \frac{\pi}{4} \right]\)
    \(\left(\frac{\pi}{4}, \frac{\pi}{3} \right]\)
    \(\left(\frac{\pi}{3}, \frac{\pi}{2} \right)\)
    \(\left[\frac{5\pi}{6}, \pi \right)\)
    \(\left(0, \frac{\pi}{6} \right]\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време