Задаци

  • 1.      

    Дата је аритметичка прогресија \(a_{1},a_{2},a_{3},\dots\) чија је разлика \(d=1\), а збир првих \(98\) чланова \(a_{1}+a_{2}+ \cdots+a_{98}=137\). Тада је збир \(a_{2}+a_{4}+a_{6}+ \cdots+a_{98}\) једнак:

    \(141\)
    \(93\)
    \(88\)
    \(127\)
    \(103\)

    Провери одговоре Не знам

  • 2.      

    Број решења једначине \(\sin^2x+cosx+1=0\) на интервалу \((0, 4\pi)\) је:

    1
    4
    3
    2
    0

    Провери одговоре Не знам

  • 3.      

    Ако је:

     

    \(\begin{eqnarray} x-2y+z&=&7\\ 2x+3y-z&=&-2\\ -x+2y+2z&=&2 \end{eqnarray}\)

     

    онда је \(x^2+y^2+z^2\) једнако:

    10
    16
    12
    14
    8

    Провери одговоре Не знам

  • 4.      

    Вредност израза \(8\sin ^2 80^o-2\sqrt{3}\sin 40^o-2\cos 40^o\) једнака је:

    \(2\sqrt{3}\)
    \(4\sqrt{3} \)
    \(1 \)
    \(2\)
    \(4 \)

    Провери одговоре Не знам

  • 5.      

    Ако права \(y = 2x + p\) у равни \(Oxy ( p \in R )\) додирује параболу \(y = x^2 − x\), онда \(p\) припада интервалу:

     

    \([−2, 2)\)  
    \([−10, −8)\)  
    \([2, 4]\)
    \([−4, −2)\)   
    \([−8, −4)\)

    Провери одговоре Не знам

  • 6.      

    Сва реална решења једначине \(\frac{x+\sqrt{3}}{\sqrt{3}+\sqrt{x+\sqrt{3}}}+\frac{x-\sqrt{3}}{\sqrt{3}-\sqrt{x-\sqrt{3}}}=\sqrt{x}\) налазе се у скупу:

    \([3\sqrt{3},6)\)
    \(\emptyset\)
    \((2\sqrt{3},3\sqrt{3})\)
    \([6,8)\)
    \([\sqrt{3},2\sqrt{3})\)

    Провери одговоре Не знам

  • 7.      

    За коју вредност реалног параметра \(m\) израз \(x_1^3  + x_2^3\), где су \(x_1\) и  \(x_2\) решења квадратне једначине \(x^2 − x + m^2 + 2m − 3 = 0\), узима максималну вредност?
     

    \(−1\) 
    \(1\)
    \(2\) 
    \(2\)
    \(0\)  

    Провери одговоре Не знам

  • 8.      

    У правој купи угао између изводнице и висине је \(60^{\circ}\) а изводница је за \(2cm\) дужа од висине. Колика је запремина те купе?

     

    \(\pi^2 cm^3\)    
    \(\frac{\pi}{3} cm^3\)
    \(8\pi cm^3\)
    \(\pi cm^3\)
     \(\frac{\pi}{2} cm^3\)  

    Провери одговоре Не знам

  • 9.      

    Збир свих целих бројева који задовољавају једначину \(\frac{x}{x+2} \leq \frac{1}{1-x}\)  је:

    \(−1\)
    \(−2\)    
     \(1\)  
    бесконачан
    \(0\)

    Провери одговоре Не знам

  • 10.      

    Ако је \(N\) број шестоцифрених бројева који у свом запису садрже цифру 1 бар на једном месту, тада \(N\) припада интервалу:

    \([2 \cdot 10^5, 3 \cdot 10^5)\)
    \([10^5, 2 \cdot 10^5)\)
    \([4 \cdot 10^5, 5 \cdot 10^5)\)
    \([5 \cdot 10^5, 6 \cdot 10^5)\)
    \([3 \cdot 10^5, 4 \cdot 10^5)\)

    Провери одговоре Не знам

  • 11.      

    Ако је \(a\in \mathbb{R}\) и \(\left | a+\frac{1}{a} \right |=3\) тада је \(\left | a-\frac{1}{a} \right |\) једнако:

    \(\sqrt{3} \)
    \(\sqrt{2} \)
    \(\sqrt{7} \)
    \(0 \)
    \(\sqrt{5} \)

    Провери одговоре Не знам

  • 12.      

    Коефициент уз \(x^{27}y^{2}\) у развоју бинома \(\left ( x^{3}+\sqrt{y} \right )^{13}\) једнак је:

    \(1516 \)
    \(78 \)
    \(1312 \)
    \(715 \)
    \(12 \)

    Провери одговоре Не знам

  • 13.      

    Ако су \(\alpha\) и \(\beta\) решења једначине \(x^2-2x+5=0\), онда је \(\frac{​\alpha^2+\alpha \beta+ \beta^2}{\alpha^3+\beta^3}\) једнако:

    \(\frac{1}{2}\)
    \(\frac{1}{22}\)
    \(\frac{1}{11}\)
    \(-\frac{1}{2}\)
    \(-\frac{1}{22}\)

    Провери одговоре Не знам

  • 14.      

    Која од наведених релација постоји између решења \(x_1\) и \(x_2\) квадратне једначине \((1+m)x^{2}-(6+5m)x+5+6m=0, (m\in \mathbb{R}, m\neq 1) ?\)

    \(x_1x_2+x_1+x_2-11=0 \)
    \(-x_1x_2+x_1+x_2-4=0 \)
    \(-x_1x_2+x_1+x_2+2=0 \)
    \(4 x_1x_2+x_1+x_2=2 \)
    \(3x_1x_2+x_1+x_2-1=0 \)

    Провери одговоре Не знам

  • 15.      

    Ако је \(a=\log_{2}3\) и \(b=\log_{5}2 \), тада је \(\log_{24}50\) једнако:

    \(\frac{b-2}{(b+1)(a+3)} \)
    \(\frac{1+b}{b(a+3)} \)
    \(\frac{2+b}{b(a+3)} \)
    \(\frac{-2+b}{b(a-4)} \)
    \(\frac{1+b}{b(a+4)} \)

    Провери одговоре Не знам

  • 16.      

    На колико начина се у ред могу поређати 5 ученика и 2 ученице, тако да ученице не стоје једна до друге?

    \(7680 \)
    \(240\)
    \(3600 \)
    \(250 \)
    \(2400 \)

    Провери одговоре Не знам

  • 17.      

    Број парова \((p,q), p,q \in R\) таквих да је полином \(x^4+px^2+q\) дељив полиномом \(x^2+px+q\), једнак је:

    \(1\)
    \(4\)
    \(2\)
    \(0\)
    \(5\)

    Провери одговоре Не знам

  • 18.      

    Око кружнице полупречника \(2cm\) описан је једнакокраки трапез површине \(20cm^2\). Дужина његовог крака је:

     

    \(20cm\)
     такав трапез не постоји
    \(10cm\)      
    \(5cm\)  
    \(6cm\)

    Провери одговоре Не знам

  • 19.      

    Странице троугла су \(21\) и \(9\sqrt{2} ,\) а њима захваћени угао \(45^o .\) Збир полупречника уписаног и описаног круга тог троугла је:

    \(6(\sqrt{3}-\sqrt{2}) \)
    \(6(\sqrt{2}+1) \)
    \(3(-\sqrt{3}+2) \)
    \(6(\sqrt{3}+2) \)
    \(6(\sqrt{2}-1) \)

    Провери одговоре Не знам

  • 20.      

    Једно од реалних решења једначине \(\log_{\cos{x}}\sin{x}=4\log_{\sin{x}}\cos{x}\) припада интервалу:

    \(\left(\frac{\pi}{6}, \frac{\pi}{4} \right]\)
    \(\left[\frac{5\pi}{6}, \pi \right)\)
    \(\left(\frac{\pi}{3}, \frac{\pi}{2} \right)\)
    \(\left(0, \frac{\pi}{6} \right]\)
    \(\left(\frac{\pi}{4}, \frac{\pi}{3} \right]\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време