Задаци

  • 1.      

    Вредност израза \( \frac{1-tg^215^{\circ}}{1+tg^215^{\circ}}\) је:

    \(\frac{\sqrt{3}}{2}\)  
    \(-\frac{2}{\sqrt{3}}\)
    \(\sqrt{3}\)
    \(1\)
    \(\frac{1}{2}\)

    Провери одговоре Не знам

  • 2.      

    Број решења једначине \(\sin^2x+cosx+1=0\) на интервалу \((0, 4\pi)\) је:

    1
    0
    4
    3
    2

    Провери одговоре Не знам

  • 3.      

    Скуп решења неједначине \(\log_2(\log_4 x) + \log_4(\log_2 x) < 2\) је:

    \((\frac{1}{16}, 16)\)
    \((\frac{1}{2}, 16)\)
    \((0, 16)\)
    \((1, 16)\)
    \((0, 8)\)  

    Провери одговоре Не знам

  • 4.      

    Ако се зна да је полином \(x^{3}+ax^{2}+bx-4, (a,b\in \mathbb{R})\) дељив полиномом \(x^{2}-1 \), тада збир \(a^{2}+ b ^{2}\) износи:

    \(1 \)
    \(5 \)
    \(14 \)
    \(3 \)
    \(17 \)

    Провери одговоре Не знам

  • 5.      

    Број \({\left( 1+i \sqrt{3}\right)}^n\), где је \(i^2=-1\), је реалан ако и само ако за неки цео број \(k\) важи:

    \(n=3k+1\)
    \(n=2k\)
    \(n=3k\)
    \(n=3k+2\)
    \(n=6k\)

    Провери одговоре Не знам

  • 6.      

    Ако је:

     

    \(\begin{eqnarray} x-2y+z&=&7\\ 2x+3y-z&=&-2\\ -x+2y+2z&=&2 \end{eqnarray}\)

     

    онда је \(x^2+y^2+z^2\) једнако:

    12
    8
    14
    16
    10

    Провери одговоре Не знам

  • 7.      

    Aко је \(f(x)=x^3-3x\) и \(g(x)=\sin \frac{\pi }{12}x\) тада је \(f(g(2))\) једнако:

    \(-\frac{11}{8} \)
    \(-\frac{11}{2} \)
    \(\frac{11}{8}\)
    \(\frac{11}{2} \)
    \(0 \)

    Провери одговоре Не знам

  • 8.      

    Решење једначине \(2^{16^{x}}=16^{2^{x}}\) јесте:

    \(\frac{2}{3} \)
    \(\frac{1}{2} \)
    \(\frac{5}{6} \)
    \(\frac{4}{5} \)
    \(\frac{3}{4} \)

    Провери одговоре Не знам

  • 9.      

    Четири младића и четири девојке иду у биоскоп. Имају карте за места у истом реду који има тачно 8 седишта. На колико начина се могу распоредити ако је познато да две од девојака не желе да седа ни на првом ни на последњем месту. 
     

     

    \(2\cdot 6!\)  
    \(\frac{(8!)^2}{2}\)
    \(\frac{8!}{4!}\)
    \(15\cdot 6!\)
    \(30\cdot 6!\)

    Провери одговоре Не знам

  • 10.      

    Прав ваљак и права купа имају заједничку основу. Врх купе је центар друге основе ваљка. Ако је однос висине ваљка и изводнице купе \(4:5\), тада је однос површина ваљка и купе једнак:

    \(4:3\)
    \(7:5\)
    \(7:4\)
    \(8:5\)
    \(3:2\)

    Провери одговоре Не знам

  • 11.      

    Која од наведених релација постоји између решења \(x_1\) и \(x_2\) квадратне једначине \((1+m)x^{2}-(6+5m)x+5+6m=0, (m\in \mathbb{R}, m\neq 1) ?\)

    \(x_1x_2+x_1+x_2-11=0 \)
    \(4 x_1x_2+x_1+x_2=2 \)
    \(-x_1x_2+x_1+x_2+2=0 \)
    \(-x_1x_2+x_1+x_2-4=0 \)
    \(3x_1x_2+x_1+x_2-1=0 \)

    Провери одговоре Не знам

  • 12.      

    Ако је \(N\) број шестоцифрених бројева који у свом запису садрже цифру 1 бар на једном месту, тада \(N\) припада интервалу:

    \([5 \cdot 10^5, 6 \cdot 10^5)\)
    \([4 \cdot 10^5, 5 \cdot 10^5)\)
    \([2 \cdot 10^5, 3 \cdot 10^5)\)
    \([3 \cdot 10^5, 4 \cdot 10^5)\)
    \([10^5, 2 \cdot 10^5)\)

    Провери одговоре Не знам

  • 13.      

    Укупан број реалних решења једначине \(\sqrt{3\cdot 2^{\log_{10}2x}+1}+\sqrt{2\cdot 2^{\log_{10}2x}+9}=\sqrt{13\cdot 2^{\log_{10}2x}-4}\) је:

    \(1 \)
    \(3 \)
    \(0 \)
    \(2 \)
    Ниједан од понуђених одговора

    Провери одговоре Не знам

  • 14.      

    Ако је \(i^{2}=-1\) и \(\varepsilon\) комплексан број који задовољава услов \(\varepsilon ^{2} + \varepsilon +1=0 ,\) тада је решење једначине \(\frac{x-1}{x+1}=\varepsilon \frac{1+i}{1-i}\) по \(x\) једнако:

    \(2\varepsilon −1−2i \)
    \(−2\varepsilon +1−2i \)
    \(−2\varepsilon −1−2i \)
    \(−2\varepsilon −1+2i \)
    \(2\varepsilon +1−2i \)

    Провери одговоре Не знам

  • 15.      

    Опадајућа аритметичка прогресија \((a_n)\) је таква да важи \(a_1^2  + a_2^2  + a_3^2  = 56\)  и \(\frac{a_{10}}{a_2}=5\). Тада је \(a_{2014}\) једнако

    таква прогресија не постоји 
    \(4030\)
    \(4028\)      
    \(−4030\)
    \(−4028\)

    Провери одговоре Не знам

  • 16.      

    Последња цифра броја \(7^{2009}\) је:

    7
    1
    3
    9
    5

    Провери одговоре Не знам

  • 17.      

    Највећа могућа запремина праве купе чија изводница има дужину \(s\) је: 

    \(\frac{2\pi s^3\sqrt{3}}{27}\)
     \(\frac{2\pi s^3\sqrt{2}}{27}\)
    \(\frac{\pi s^3\sqrt{3}}{9}\)  
    \(\frac{\pi s^3\sqrt{3}}{27}\)  
    \(\frac{4\pi s^3\sqrt{3}}{27}\)  

    Провери одговоре Не знам

  • 18.      

    Бројеви \(a, b, c\) су узастопни чланови растућег аритметичког низа, а бројеви \(a,b,c+1\) су узастопни бројеви геометријског низа. Ако је \(a+b+c=18\), онда је \(a^2+b^2+c^2\) једнако:

    133
    140
    109
    116
    126

    Провери одговоре Не знам

  • 19.      

    Максимална запремина ваљка уписаног у лопту полупречника \(R\) је:

    \(\frac{1}{\sqrt{2}}R^3\pi\)
    \(\frac{4}{3\sqrt{3}}R^3\pi\)
    \(\frac{2}{3}R^3\pi\)
    \(\frac{2}{3\sqrt{3}}R^3\pi\)
    \(\frac{16}{27}R^3\pi\)

    Провери одговоре Не знам

  • 20.      

    Ако за дијагонале ромба важи једнакост \(d_1=(2-\sqrt{3})d_2\), тада је оштар угао ромба једнак:

    \(45^{\circ}\)
    \(15^{\circ}\)
    \(22,5^{\circ}\)
    \(60^{\circ}\)
    \(30^{\circ}\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време