Задаци

  • 1.      

    Ако је \(k \in R\), \(i^{2}=-1\), тада је могудо комплексног броја \(\left(\frac{1+i}{1-i}\right)^{2015}+\frac{-1+5ki}{3i}-1\) најмањи за \(k\) једнако:

    \(\frac{3}{5}\)
    \(3\)
    \(0\)
    \(-\frac{1}{2}\)
    \(\frac{1}{3}\)

    Провери одговоре Не знам

  • 2.      

    Скуп свих решења неједначине \(\frac{\left | 1-x \right |}{1-\left | x \right |}<\frac{1+\left | x \right |}{\left | 1+x \right |}\) је облика (за неке реалне бројеве \(a\) и \(b\) такве да је \(0 < a < b < + \infty ):\)

    \((-\infty, -a) \cup (a, +\infty ) \)
    \((-\infty, -a) \)
    \((a, +\infty ) \)
    \((-b, -a) \cup (a, b) \)
    \((-\infty, -a) \cup (-a, a ) \cup (a, +\infty ) \)

    Провери одговоре Не знам

  • 3.      

    Скуп решења неједначине \(\log_2(\log_4 x) + \log_4(\log_2 x) < 2\) је:

    \((0, 8)\)  
    \((0, 16)\)
    \((\frac{1}{16}, 16)\)
    \((\frac{1}{2}, 16)\)
    \((1, 16)\)

    Провери одговоре Не знам

  • 4.      

    Сва реална решења једначине \(\frac{x+\sqrt{3}}{\sqrt{3}+\sqrt{x+\sqrt{3}}}+\frac{x-\sqrt{3}}{\sqrt{3}-\sqrt{x-\sqrt{3}}}=\sqrt{x}\) налазе се у скупу:

    \([3\sqrt{3},6)\)
    \([\sqrt{3},2\sqrt{3})\)
    \((2\sqrt{3},3\sqrt{3})\)
    \(\emptyset\)
    \([6,8)\)

    Провери одговоре Не знам

  • 5.      

    Највећа могућа запремина праве купе чија изводница има дужину \(s\) је: 

    \(\frac{4\pi s^3\sqrt{3}}{27}\)  
    \(\frac{2\pi s^3\sqrt{3}}{27}\)
     \(\frac{2\pi s^3\sqrt{2}}{27}\)
    \(\frac{\pi s^3\sqrt{3}}{27}\)  
    \(\frac{\pi s^3\sqrt{3}}{9}\)  

    Провери одговоре Не знам

  • 6.      

    Најкраће растојање између правих \(\sqrt{2}x+y=1\) и \(2x+\sqrt{2}y=3\sqrt{2}\) једнако је:

    \(2\)
    \(\sqrt{2}\)
    \(0\)
    \(\frac{\sqrt{6}}{6}\)
    \(\frac{2}{3}\sqrt{3}\)

    Провери одговоре Не знам

  • 7.      

    Прав ваљак и права купа имају заједничку основу. Врх купе је центар друге основе ваљка. Ако је однос висине ваљка и изводнице купе \(4:5\), тада је однос површина ваљка и купе једнак:

    \(7:4\)
    \(4:3\)
    \(3:2\)
    \(8:5\)
    \(7:5\)

    Провери одговоре Не знам

  • 8.      

    Знајући да је \(\cos\left({x-\frac{3\pi}{2}}\right)=-\frac{4}{5}\) и \(\frac{\pi}{2}<x<\pi\), тада је вредност израза \(\sin\frac{x}{2}\cos{\frac{5x}{2}}\) једнака:

    \(-\frac{38}{125}\)
    \(-1\)
    \(1\)
    \(\frac{82}{125}\)
    \(\frac{4}{125}\)

    Провери одговоре Не знам

  • 9.      

    Број реалиних решења једначине \(f(x)+f(f(x))=x\), где је \(f(x)=|x|+a\)\(a>0\) једнак је:

    \(4\)
    \(2\)
    \(3\)
    \(1\)
    \(0\)

    Провери одговоре Не знам

  • 10.      

    Број парова \((p,q), p,q \in R\) таквих да је полином \(x^4+px^2+q\) дељив полиномом \(x^2+px+q\), једнак је:

    \(5\)
    \(1\)
    \(0\)
    \(4\)
    \(2\)

    Провери одговоре Не знам

  • 11.      

    За коју вредност реалног параметра \(m\) израз \(x_1^3  + x_2^3\), где су \(x_1\) и  \(x_2\) решења квадратне једначине \(x^2 − x + m^2 + 2m − 3 = 0\), узима максималну вредност?
     

    \(2\)
    \(2\) 
    \(−1\) 
    \(1\)
    \(0\)  

    Провери одговоре Не знам

  • 12.      

    Ако за дијагонале ромба важи једнакост \(d_1=(2-\sqrt{3})d_2\), тада је оштар угао ромба једнак:

    \(15^{\circ}\)
    \(22,5^{\circ}\)
    \(30^{\circ}\)
    \(60^{\circ}\)
    \(45^{\circ}\)

    Провери одговоре Не знам

  • 13.      

    Правилна четворострана призма пресечена је са равни која садржи основну ивицу призме. Ако је површина пресека равни призме два пута већи од површине базе, тада је угао између те равни и базе призме једнак:

    \(30^o \)
    \(60^o \)
    \(45^o \)
    \(15^o \)
    \(75^o \)

    Провери одговоре Не знам

  • 14.      

    Кружница пролази кроз крајње тачке једне странице квадрата и кроз средиште наспрамне странице. Ако је страница квадрата дужине \(a\), онда је пречник кружнице једнак: 

    \(\frac{\sqrt{5}a}{4}\)
    \(\frac{3a}{\sqrt{2}}\)  
    \(\frac{5a}{4}\)
     \(\frac{3a}{2}\)  
    \(\frac{a+1}{a}\)

    Провери одговоре Не знам

  • 15.      

    Једна катета правоуглог троугла је \(8cm\), а хипотенуза је \(17cm\). Полупречник уписаног круга тог троугла је:

    4cm
    2,5cm
    3cm
    3,5cm
    2cm

    Провери одговоре Не знам

  • 16.      

    Ако је \(k \in Z\) и \(0,0010101 \cdot 10^{k}>1001\), која је намања могућа вредност за \(k\)?

    \(0\)
    \(5\)
    \(-6\)
    \(6\)
    \(-5\)

    Провери одговоре Не знам

  • 17.      

    Скуп свих реалних вредности за које важи неједнакост \(|4^{3x}-2^{4x+2}\cdot3^{x+1}+20\cdot12^x\cdot3^x|\geq8\cdot6^x(8^{x-1}+6^x)\) је облика (за неке реалне бројеве \(a, b, c\) и \(d\) такве да је \(-\infty<a<b<c<d<\infty\)):

    \((-\infty,a]\cup(b,c)\)
    \((a,b)\cup\{c\}\)
    \((-\infty,a]\cup[b,c]\cup[d,+\infty)\)
    \((-\infty,a)\cup(d,+\infty)\)
    \((-\infty,a)\cup[b,c)\)

    Провери одговоре Не знам

  • 18.      

    Једно од реалних решења једначине \(\log_{\cos{x}}\sin{x}=4\log_{\sin{x}}\cos{x}\) припада интервалу:

    \(\left[\frac{5\pi}{6}, \pi \right)\)
    \(\left(\frac{\pi}{3}, \frac{\pi}{2} \right)\)
    \(\left(\frac{\pi}{6}, \frac{\pi}{4} \right]\)
    \(\left(\frac{\pi}{4}, \frac{\pi}{3} \right]\)
    \(\left(0, \frac{\pi}{6} \right]\)

    Провери одговоре Не знам

  • 19.      

    Ако график функције \(y=\frac{1}{x^2-ax+2}\) садржи тачку \(M\left( -3, \frac{1}{19} \right)\) онда је највећа вредност функције једнака:

    \(\frac{3}{22}\)
    \(\frac{1}{2}\)
    \(\frac{3}{10}\)
    \(4\)
    \(\frac{9}{2}\)

    Провери одговоре Не знам

  • 20.      

    Израз \(a \sqrt{a} \cdot \sqrt[4]{a^3}\), \(a \geq 0\), идентички је једнак изразу:

    \(\sqrt[4]{a^9}\)
    \(\sqrt[4]{a^7}\)
    \(a^6\)
    \(\sqrt[4]{a^{11}}\)
    \(a^2\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време