Задаци

  • 1.      

    Вредност израза \( \frac{1-tg^215^{\circ}}{1+tg^215^{\circ}}\) је:

    \(\sqrt{3}\)
    \(\frac{1}{2}\)
    \(-\frac{2}{\sqrt{3}}\)
    \(\frac{\sqrt{3}}{2}\)  
    \(1\)

    Провери одговоре Не знам

  • 2.      

    Укупан број парова \((x,y)\) целих бројева таквих да важи \(|x^2-2x|-y<\frac{1}{2}\) и \(y+|x-1|<2\) је:

    \(1\)
    \(4\)
    \(0\)
    \(2\)
    \(3\)

    Провери одговоре Не знам

  • 3.      

    Растојање координатног почетка \(O\) правоуглог координатног система \(xOy\) од праве задате једначином \(y=3x+5\) је:

    \(\frac{\sqrt{10}}{2}\)
    \(\frac{\sqrt{5}}{3}\)
    \(\frac{3}{2}\)
    \(\frac{\sqrt{5}}{2}\)
    \(\frac{\sqrt{10}}{3}\)

    Провери одговоре Не знам

  • 4.      

    Странице троугла су \(21\) и \(9\sqrt{2} ,\) а њима захваћени угао \(45^o .\) Збир полупречника уписаног и описаног круга тог троугла је:

    \(3(-\sqrt{3}+2) \)
    \(6(\sqrt{3}-\sqrt{2}) \)
    \(6(\sqrt{3}+2) \)
    \(6(\sqrt{2}-1) \)
    \(6(\sqrt{2}+1) \)

    Провери одговоре Не знам

  • 5.      

    Једначина \(\sqrt{1-x}=-x\) :

    има тачно једно решење и оно је позитивно
    има тачно једно решење и оно је негативно
    има тачно два решења
    има више од два решење
    нема решења                

    Провери одговоре Не знам

  • 6.      

    Ако је \(a\in \mathbb{R}\) и \(\left | a+\frac{1}{a} \right |=3\) тада је \(\left | a-\frac{1}{a} \right |\) једнако:

    \(\sqrt{2} \)
    \(\sqrt{5} \)
    \(0 \)
    \(\sqrt{7} \)
    \(\sqrt{3} \)

    Провери одговоре Не знам

  • 7.      

    Око кружнице полупречника \(2cm\) описан је једнакокраки трапез површине \(20cm^2\). Дужина његовог крака је:

     

    \(20cm\)
    \(10cm\)      
    \(6cm\)
    \(5cm\)  
     такав трапез не постоји

    Провери одговоре Не знам

  • 8.      

    Средиште горње основе коцке и средишта ивица њене доње основе су темена пирамиде. Ако је ивица коцке \(2cm\), површина омотача пирамиде је:

    \(4\sqrt{3}{cm}^2\)
    \(3\sqrt{2}{cm}^2\)
    \(9{cm}^2\)
    \(6{cm}^2\)
    \(4\sqrt{2}{cm}^2\)

    Провери одговоре Не знам

  • 9.      

    Укупан број реалних решења једначине \(\sqrt{3\cdot 2^{\log_{10}2x}+1}+\sqrt{2\cdot 2^{\log_{10}2x}+9}=\sqrt{13\cdot 2^{\log_{10}2x}-4}\) је:

    \(0 \)
    Ниједан од понуђених одговора
    \(3 \)
    \(1 \)
    \(2 \)

    Провери одговоре Не знам

  • 10.      

    Број решења једначине \(\sin^2x+cosx+1=0\) на интервалу \((0, 4\pi)\) је:

    1
    2
    0
    3
    4

    Провери одговоре Не знам

  • 11.      

    Израз \(a \sqrt{a} \cdot \sqrt[4]{a^3}\), \(a \geq 0\), идентички је једнак изразу:

    \(a^6\)
    \(\sqrt[4]{a^7}\)
    \(\sqrt[4]{a^9}\)
    \(\sqrt[4]{a^{11}}\)
    \(a^2\)

    Провери одговоре Не знам

  • 12.      

    Дата је аритметичка прогресија \(a_{1},a_{2},a_{3},\dots\) чија је разлика \(d=1\), а збир првих \(98\) чланова \(a_{1}+a_{2}+ \cdots+a_{98}=137\). Тада је збир \(a_{2}+a_{4}+a_{6}+ \cdots+a_{98}\) једнак:

    \(127\)
    \(93\)
    \(88\)
    \(103\)
    \(141\)

    Провери одговоре Не знам

  • 13.      

    Коефициент уз \(x^{27}y^{2}\) у развоју бинома \(\left ( x^{3}+\sqrt{y} \right )^{13}\) једнак је:

    \(1312 \)
    \(1516 \)
    \(78 \)
    \(715 \)
    \(12 \)

    Провери одговоре Не знам

  • 14.      

    У правој купи угао између изводнице и висине је \(60^{\circ}\) а изводница је за \(2cm\) дужа од висине. Колика је запремина те купе?

     

    \(8\pi cm^3\)
    \(\pi cm^3\)
    \(\frac{\pi}{3} cm^3\)
    \(\pi^2 cm^3\)    
     \(\frac{\pi}{2} cm^3\)  

    Провери одговоре Не знам

  • 15.      

    Кружница пролази кроз крајње тачке једне странице квадрата и кроз средиште наспрамне странице. Ако је страница квадрата дужине \(a\), онда је пречник кружнице једнак: 

     \(\frac{3a}{2}\)  
    \(\frac{5a}{4}\)
    \(\frac{\sqrt{5}a}{4}\)
    \(\frac{a+1}{a}\)
    \(\frac{3a}{\sqrt{2}}\)  

    Провери одговоре Не знам

  • 16.      

    Број реалиних решења једначине \(f(x)+f(f(x))=x\), где је \(f(x)=|x|+a\)\(a>0\) једнак је:

    \(4\)
    \(0\)
    \(2\)
    \(3\)
    \(1\)

    Провери одговоре Не знам

  • 17.      

    Ако се зна да \(\frac{14}{9}\) биномног коефицијента трећег члана, биномни коефицијент четвртог члана и биномни коефицијент петог члана у развоју бинома \(\left( \sqrt[3]{x}+\frac{1}{\sqrt{x}} \right)^n\)\((n \in N, x>0)\), чине геометријску прогресију, тада је биномни коефицијент уз \(\sqrt{x}\) једнак:

    \(48\)
    \(5\)
    \(84\)
    \(21\)
    \(1\)

    Провери одговоре Не знам

  • 18.      

    Опадајућа аритметичка прогресија \((a_n)\) је таква да важи \(a_1^2  + a_2^2  + a_3^2  = 56\)  и \(\frac{a_{10}}{a_2}=5\). Тада је \(a_{2014}\) једнако

    таква прогресија не постоји 
    \(−4030\)
    \(4028\)      
    \(−4028\)
    \(4030\)

    Провери одговоре Не знам

  • 19.      

    Унутрашљи углови конвексног петоугла односе се као 3 : 4 : 5 : 7 : 8. Разлика највећег и најмањег од тих углова је:

    120°
    60°
    40°
    80°
    100°

    Провери одговоре Не знам

  • 20.      

    Ако је:

     

    \(\begin{eqnarray} x-2y+z&=&7\\ 2x+3y-z&=&-2\\ -x+2y+2z&=&2 \end{eqnarray}\)

     

    онда је \(x^2+y^2+z^2\) једнако:

    12
    10
    8
    16
    14

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време