Задаци

  • 1.      

    Прав ваљак и права купа имају заједничку основу. Врх купе је центар друге основе ваљка. Ако је однос висине ваљка и изводнице купе \(4:5\), тада је однос површина ваљка и купе једнак:

    \(7:4\)
    \(3:2\)
    \(4:3\)
    \(8:5\)
    \(7:5\)

    Провери одговоре Не знам

  • 2.      

    За коју вредност реалног параметра \(m\) израз \(x_1^3  + x_2^3\), где су \(x_1\) и  \(x_2\) решења квадратне једначине \(x^2 − x + m^2 + 2m − 3 = 0\), узима максималну вредност?
     

    \(−1\) 
    \(2\) 
    \(2\)
    \(1\)
    \(0\)  

    Провери одговоре Не знам

  • 3.      

    Скуп решења неједначине \(\log_2(\log_4 x) + \log_4(\log_2 x) < 2\) је:

    \((\frac{1}{2}, 16)\)
    \((1, 16)\)
    \((0, 8)\)  
    \((\frac{1}{16}, 16)\)
    \((0, 16)\)

    Провери одговоре Не знам

  • 4.      

    Највећа могућа запремина праве купе чија изводница има дужину \(s\) је: 

     \(\frac{2\pi s^3\sqrt{2}}{27}\)
    \(\frac{\pi s^3\sqrt{3}}{9}\)  
    \(\frac{4\pi s^3\sqrt{3}}{27}\)  
    \(\frac{\pi s^3\sqrt{3}}{27}\)  
    \(\frac{2\pi s^3\sqrt{3}}{27}\)

    Провери одговоре Не знам

  • 5.      

    Ако су \(x_{1}\) и \(x_{2}\) решења квадратне једначине \(x^2+x+1=0\), тада су \(y_{1}=ax_{1}+x_{2}\) и \(y_{2}=x_{1}+ax_{2}\), \((a \in R)\), решења квадратне једначине:

    \(y^{2}+(a+1)y-a^2+a+1=0\)
    \(y^{2}+(a^2+1)y+1=0\)
    \(y^{2}+(a+1)y+a^2-a+1=0\)
    ниједан од понуђених одговора
    \(y^{2}+(a^2+1)y+a^2-a+1=0\)

    Провери одговоре Не знам

  • 6.      

    Ако је \(a=\log_{2}3\) и \(b=\log_{5}2 \), тада је \(\log_{24}50\) једнако:

    \(\frac{2+b}{b(a+3)} \)
    \(\frac{1+b}{b(a+4)} \)
    \(\frac{1+b}{b(a+3)} \)
    \(\frac{b-2}{(b+1)(a+3)} \)
    \(\frac{-2+b}{b(a-4)} \)

    Провери одговоре Не знам

  • 7.      

    Израз \(a \sqrt{a} \cdot \sqrt[4]{a^3}\), \(a \geq 0\), идентички је једнак изразу:

    \(\sqrt[4]{a^7}\)
    \(a^6\)
    \(a^2\)
    \(\sqrt[4]{a^{11}}\)
    \(\sqrt[4]{a^9}\)

    Провери одговоре Не знам

  • 8.      

    Кружница пролази кроз крајње тачке једне странице квадрата и кроз средиште наспрамне странице. Ако је страница квадрата дужине \(a\), онда је пречник кружнице једнак: 

    \(\frac{5a}{4}\)
    \(\frac{3a}{\sqrt{2}}\)  
    \(\frac{a+1}{a}\)
     \(\frac{3a}{2}\)  
    \(\frac{\sqrt{5}a}{4}\)

    Провери одговоре Не знам

  • 9.      

    Решење једначине \(2^{16^{x}}=16^{2^{x}}\) јесте:

    \(\frac{4}{5} \)
    \(\frac{2}{3} \)
    \(\frac{5}{6} \)
    \(\frac{3}{4} \)
    \(\frac{1}{2} \)

    Провери одговоре Не знам

  • 10.      

    Једначина \(\sqrt{1-x}=-x\) :

    има више од два решење
    нема решења                
    има тачно једно решење и оно је позитивно
    има тачно једно решење и оно је негативно
    има тачно два решења

    Провери одговоре Не знам

  • 11.      

    Укупан број парова \((x,y)\) целих бројева таквих да важи \(|x^2-2x|-y<\frac{1}{2}\) и \(y+|x-1|<2\) је:

    \(3\)
    \(0\)
    \(2\)
    \(4\)
    \(1\)

    Провери одговоре Не знам

  • 12.      

    Aко је \(f(x)=x^3-3x\) и \(g(x)=\sin \frac{\pi }{12}x\) тада је \(f(g(2))\) једнако:

    \(0 \)
    \(\frac{11}{2} \)
    \(-\frac{11}{8} \)
    \(-\frac{11}{2} \)
    \(\frac{11}{8}\)

    Провери одговоре Не знам

  • 13.      

    Дата је аритметичка прогресија \(a_{1},a_{2},a_{3},\dots\) чија је разлика \(d=1\), а збир првих \(98\) чланова \(a_{1}+a_{2}+ \cdots+a_{98}=137\). Тада је збир \(a_{2}+a_{4}+a_{6}+ \cdots+a_{98}\) једнак:

    \(88\)
    \(141\)
    \(93\)
    \(103\)
    \(127\)

    Провери одговоре Не знам

  • 14.      

    Ако је \(N\) број шестоцифрених бројева који у свом запису садрже цифру 1 бар на једном месту, тада \(N\) припада интервалу:

    \([2 \cdot 10^5, 3 \cdot 10^5)\)
    \([4 \cdot 10^5, 5 \cdot 10^5)\)
    \([10^5, 2 \cdot 10^5)\)
    \([5 \cdot 10^5, 6 \cdot 10^5)\)
    \([3 \cdot 10^5, 4 \cdot 10^5)\)

    Провери одговоре Не знам

  • 15.      

    У једнакокраком \(ABC\) троуглу је \(AB=BC=b\), \(AC=a\) и \(\sphericalangle ABC=20^{\circ}\). тада је израз \(\frac{a^2}{b^2}+\frac{b}{a}\) једнак:

    \(\frac{3}{2}\)
    \(2\)
    \(1\)
    \(3\)
    \(\frac{5}{2}\)

    Провери одговоре Не знам

  • 16.      

    Збир првих 2012 чланова аритметичке прогресије \(\frac{2011}{2012}, \frac{2010}{2012}, \frac{2009}{2012}, \cdots \) износи:

    \(\frac{2013}{4} \)
    \(\frac{2011}{4} \)
    Ни један од понуђених одговора
    \(\frac{2013}{2} \)
    \(\frac{2011}{2} \)

    Провери одговоре Не знам

  • 17.      

    Укупан број дијагонала правилног десетоугла је:

    \(  25 \)
    \(  35 \)
    \(  20 \)
    \(  30 \)
    \(  15 \)

    Провери одговоре Не знам

  • 18.      

    Која од наведених релација постоји између решења \(x_1\) и \(x_2\) квадратне једначине \((1+m)x^{2}-(6+5m)x+5+6m=0, (m\in \mathbb{R}, m\neq 1) ?\)

    \(-x_1x_2+x_1+x_2+2=0 \)
    \(x_1x_2+x_1+x_2-11=0 \)
    \(4 x_1x_2+x_1+x_2=2 \)
    \(-x_1x_2+x_1+x_2-4=0 \)
    \(3x_1x_2+x_1+x_2-1=0 \)

    Провери одговоре Не знам

  • 19.      

    Коефицијент уз \(x^{24}\) у развијеном облику степена бинома \((x^2-2x)^{13}\) је:

    156
    312
    78
    -78
    -312

    Провери одговоре Не знам

  • 20.      

    Најкраће растојање између правих \(\sqrt{2}x+y=1\) и \(2x+\sqrt{2}y=3\sqrt{2}\) једнако је:

    \(\frac{\sqrt{6}}{6}\)
    \(2\)
    \(\frac{2}{3}\sqrt{3}\)
    \(0\)
    \(\sqrt{2}\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време