Пријемни испит
Број поена
Електротехнички,Природно Математички и Фармацеутски факултет
Ако се зна да \(\frac{14}{9}\) биномног коефицијента трећег члана, биномни коефицијент четвртог члана и биномни коефицијент петог члана у развоју бинома \(\left( \sqrt[3]{x}+\frac{1}{\sqrt{x}} \right)^n\)\((n \in N, x>0)\), чине геометријску прогресију, тада је биномни коефицијент уз \(\sqrt{x}\) једнак:
У правој купи угао између изводнице и висине је \(60^{\circ}\) а изводница је за \(2cm\) дужа од висине. Колика је запремина те купе?
Ако су \(A\) и \(B\) тачке на кругу \(x^2 + y^2 + 4x + 4y + 5 = 0\) најдаље и најближе тачки \(C(1, 2)\) онда је \(AC + BC\) једнако:
Једно од реалних решења једначине \(\log_{\cos{x}}\sin{x}=4\log_{\sin{x}}\cos{x}\) припада интервалу:
Ако је:
\(\begin{eqnarray} x-2y+z&=&7\\ 2x+3y-z&=&-2\\ -x+2y+2z&=&2 \end{eqnarray}\)
онда је \(x^2+y^2+z^2\) једнако:
Кружница пролази кроз крајње тачке једне странице квадрата и кроз средиште наспрамне странице. Ако је страница квадрата дужине \(a\), онда је пречник кружнице једнак:
Ако је \(A=\frac{1}{6}\left((log_{2}{3})^3- (\log_{2}{6})^3-(\log_{2}{12})^3+(log_{2}{24})^3 \right)\), тада је вредност израза \(2^A\) једнака:
Ако су \(\alpha\) и \(\beta\) решења једначине \(x^2-2x+5=0\), онда је \(\frac{\alpha^2+\alpha \beta+ \beta^2}{\alpha^3+\beta^3}\) једнако:
Коефициент уз \(x^{27}y^{2}\) у развоју бинома \(\left ( x^{3}+\sqrt{y} \right )^{13}\) једнак је:
Израз \(a \sqrt{a} \cdot \sqrt[4]{a^3}\), \(a \geq 0\), идентички је једнак изразу:
Сва реална решења једначине \(\frac{x+\sqrt{3}}{\sqrt{3}+\sqrt{x+\sqrt{3}}}+\frac{x-\sqrt{3}}{\sqrt{3}-\sqrt{x-\sqrt{3}}}=\sqrt{x}\) налазе се у скупу:
Број парова \((p,q), p,q \in R\) таквих да је полином \(x^4+px^2+q\) дељив полиномом \(x^2+px+q\), једнак је:
Тангента криве \(y=e^{-x} (x>-1)\), сече координатне осе у тачкама \(A\) и \(B\). Ако је \(O\) координатни почетак, максимална површина троугла \(AOB\) износи:
Вредност израза \(8\sin ^2 80^o-2\sqrt{3}\sin 40^o-2\cos 40^o\) једнака је:
Дата је аритметичка прогресија \(a_{1},a_{2},a_{3},\dots\) чија је разлика \(d=1\), а збир првих \(98\) чланова \(a_{1}+a_{2}+ \cdots+a_{98}=137\). Тада је збир \(a_{2}+a_{4}+a_{6}+ \cdots+a_{98}\) једнак:
Коефицијент уз \(x^{24}\) у развијеном облику степена бинома \((x^2-2x)^{13}\) је:
Ако права \(y = 2x + p\) у равни \(Oxy ( p \in R )\) додирује параболу \(y = x^2 − x\), онда \(p\) припада интервалу:
Максимална запремина ваљка уписаног у лопту полупречника \(R\) је:
Вредност израза \(\left( 1-sin\frac{\pi}{8} \right)\left( 1+sin\frac{\pi}{8} \right)\) је:
Скуп решења неједначине \(2\ln(1-x)-\ln(2x+6) \leq 0\) је:
Тренутно нема података за приказ графикона!
Попуните образац за слање ваших резултата вашем наставнику.