Задаци

  • 1.      

    Ако се зна да \(\frac{14}{9}\) биномног коефицијента трећег члана, биномни коефицијент четвртог члана и биномни коефицијент петог члана у развоју бинома \(\left( \sqrt[3]{x}+\frac{1}{\sqrt{x}} \right)^n\)\((n \in N, x>0)\), чине геометријску прогресију, тада је биномни коефицијент уз \(\sqrt{x}\) једнак:

    \(5\)
    \(1\)
    \(21\)
    \(84\)
    \(48\)

    Провери одговоре Не знам

  • 2.      

    У правој купи угао између изводнице и висине је \(60^{\circ}\) а изводница је за \(2cm\) дужа од висине. Колика је запремина те купе?

     

    \(\pi^2 cm^3\)    
    \(\frac{\pi}{3} cm^3\)
    \(8\pi cm^3\)
    \(\pi cm^3\)
     \(\frac{\pi}{2} cm^3\)  

    Провери одговоре Не знам

  • 3.      

    Ако су \(A\) и \(B\) тачке на кругу \(x^2  + y^2  + 4x + 4y + 5  =  0\) најдаље и најближе тачки \(C(1, 2)\) онда је \(AC + BC\) једнако: 
     

     

    \(5\sqrt{3}+5\)  
    \(10\)  
    \(5\)  
    \(5-\sqrt{3}\)
    \(5\sqrt{3}\)

    Провери одговоре Не знам

  • 4.      

    Једно од реалних решења једначине \(\log_{\cos{x}}\sin{x}=4\log_{\sin{x}}\cos{x}\) припада интервалу:

    \(\left(\frac{\pi}{3}, \frac{\pi}{2} \right)\)
    \(\left(0, \frac{\pi}{6} \right]\)
    \(\left[\frac{5\pi}{6}, \pi \right)\)
    \(\left(\frac{\pi}{4}, \frac{\pi}{3} \right]\)
    \(\left(\frac{\pi}{6}, \frac{\pi}{4} \right]\)

    Провери одговоре Не знам

  • 5.      

    Ако је:

     

    \(\begin{eqnarray} x-2y+z&=&7\\ 2x+3y-z&=&-2\\ -x+2y+2z&=&2 \end{eqnarray}\)

     

    онда је \(x^2+y^2+z^2\) једнако:

    10
    16
    8
    14
    12

    Провери одговоре Не знам

  • 6.      

    Кружница пролази кроз крајње тачке једне странице квадрата и кроз средиште наспрамне странице. Ако је страница квадрата дужине \(a\), онда је пречник кружнице једнак: 

     \(\frac{3a}{2}\)  
    \(\frac{5a}{4}\)
    \(\frac{3a}{\sqrt{2}}\)  
    \(\frac{a+1}{a}\)
    \(\frac{\sqrt{5}a}{4}\)

    Провери одговоре Не знам

  • 7.      

    Ако је \(A=\frac{1}{6}\left((log_{2}{3})^3- (\log_{2}{6})^3-(\log_{2}{12})^3+(log_{2}{24})^3 \right)\), тада је вредност израза \(2^A\) једнака:

    \(1\)
    \(64\)
    \(144\)
    \(72\)
    \(36\)

    Провери одговоре Не знам

  • 8.      

    Ако су \(\alpha\) и \(\beta\) решења једначине \(x^2-2x+5=0\), онда је \(\frac{​\alpha^2+\alpha \beta+ \beta^2}{\alpha^3+\beta^3}\) једнако:

    \(\frac{1}{22}\)
    \(-\frac{1}{2}\)
    \(\frac{1}{11}\)
    \(-\frac{1}{22}\)
    \(\frac{1}{2}\)

    Провери одговоре Не знам

  • 9.      

    Коефициент уз \(x^{27}y^{2}\) у развоју бинома \(\left ( x^{3}+\sqrt{y} \right )^{13}\) једнак је:

    \(715 \)
    \(12 \)
    \(1312 \)
    \(78 \)
    \(1516 \)

    Провери одговоре Не знам

  • 10.      

    Израз \(a \sqrt{a} \cdot \sqrt[4]{a^3}\), \(a \geq 0\), идентички је једнак изразу:

    \(\sqrt[4]{a^{11}}\)
    \(\sqrt[4]{a^9}\)
    \(a^2\)
    \(\sqrt[4]{a^7}\)
    \(a^6\)

    Провери одговоре Не знам

  • 11.      

    Сва реална решења једначине \(\frac{x+\sqrt{3}}{\sqrt{3}+\sqrt{x+\sqrt{3}}}+\frac{x-\sqrt{3}}{\sqrt{3}-\sqrt{x-\sqrt{3}}}=\sqrt{x}\) налазе се у скупу:

    \([3\sqrt{3},6)\)
    \((2\sqrt{3},3\sqrt{3})\)
    \([6,8)\)
    \([\sqrt{3},2\sqrt{3})\)
    \(\emptyset\)

    Провери одговоре Не знам

  • 12.      

    Број парова \((p,q), p,q \in R\) таквих да је полином \(x^4+px^2+q\) дељив полиномом \(x^2+px+q\), једнак је:

    \(4\)
    \(1\)
    \(5\)
    \(2\)
    \(0\)

    Провери одговоре Не знам

  • 13.      

    Тангента криве \(y=e^{-x} (x>-1)\), сече координатне осе у тачкама \(A\) и \(B\). Ако је \(O\) координатни почетак, максимална површина троугла \(AOB\) износи:

    \(e\)
    \(2e\)
    \(\frac{2}{e}\)
    \(\frac{3}{e}\)
    \(\frac{1}{e}\)

    Провери одговоре Не знам

  • 14.      

    Вредност израза \(8\sin ^2 80^o-2\sqrt{3}\sin 40^o-2\cos 40^o\) једнака је:

    \(4 \)
    \(2\sqrt{3}\)
    \(1 \)
    \(2\)
    \(4\sqrt{3} \)

    Провери одговоре Не знам

  • 15.      

    Дата је аритметичка прогресија \(a_{1},a_{2},a_{3},\dots\) чија је разлика \(d=1\), а збир првих \(98\) чланова \(a_{1}+a_{2}+ \cdots+a_{98}=137\). Тада је збир \(a_{2}+a_{4}+a_{6}+ \cdots+a_{98}\) једнак:

    \(93\)
    \(141\)
    \(103\)
    \(88\)
    \(127\)

    Провери одговоре Не знам

  • 16.      

    Коефицијент уз \(x^{24}\) у развијеном облику степена бинома \((x^2-2x)^{13}\) је:

    78
    -312
    312
    156
    -78

    Провери одговоре Не знам

  • 17.      

    Ако права \(y = 2x + p\) у равни \(Oxy ( p \in R )\) додирује параболу \(y = x^2 − x\), онда \(p\) припада интервалу:

     

    \([−10, −8)\)  
    \([2, 4]\)
    \([−4, −2)\)   
    \([−2, 2)\)  
    \([−8, −4)\)

    Провери одговоре Не знам

  • 18.      

    Максимална запремина ваљка уписаног у лопту полупречника \(R\) је:

    \(\frac{2}{3\sqrt{3}}R^3\pi\)
    \(\frac{2}{3}R^3\pi\)
    \(\frac{1}{\sqrt{2}}R^3\pi\)
    \(\frac{16}{27}R^3\pi\)
    \(\frac{4}{3\sqrt{3}}R^3\pi\)

    Провери одговоре Не знам

  • 19.      

    Вредност израза \(\left( 1-sin\frac{\pi}{8} \right)\left( 1+sin\frac{\pi}{8} \right)\) је:

    \(\frac{1}{4}\)
    \(\frac{2-\sqrt{2}}{4}\)
    \(\frac{\sqrt{2}}{8}\)
    \(\frac{2+\sqrt{2}}{4}\)
    \(\frac{\sqrt{2}}{4}\)

    Провери одговоре Не знам

  • 20.      

    Скуп решења неједначине \(2\ln(1-x)-\ln(2x+6) \leq 0\) је:

    \([-1,1)\)
    \((-3,1)\)
    \([-2,1)\)
    \([-1,5]\)
    \((-3,5]\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време